Skip to content

Algebra Math - Junior आधुनिक विद्या निकेतन ट्यूशन सेंटर Visit: avnlearn.com

Algebraic Expression

  1. Write the following using literals, numbers and signs of basic operations.
    1. x increased by 12
    2. y decreased by 7
    3. The difference of a and b. when a > b
    4. 5 times x added to 7 times y
    5. Sum of x and the quotient of y by 5
    6. x taken away from 4
    7. 2 less than the quotient of x by y
    8. x multiplied by itself
    9. Twice x increased by y
    10. Thrice x added to y squared
    11. x cubed less than y cubed
  2. Write the following in the exponential form:
    1. b × b × b × …15 times
    2. y × y × y × …20 times
    3. 14 × a × a × a × a × b × b × b
    4. 6 × x × x × y × y
    5. 3 × z × z × z × y × y × x
  3. Write down the following in the product form:
    1. x2y4
    2. 6y5
    3. 9xy2z
    4. 10a3b3c3
  4. If a = 2 and b = 3. find the value of
    1. a + b
    2. a2 + ab
    3. ab − a2
    4. 2a − 3b
    5. 5a2 − 2ab
    6. a3 − b3
  5. If x = 1, y = 2 and z = 5, find the value of
    1. 3x − 2y + 4z
    2. x2 + y2 + z2
    3. 2x2 − 3y2 + z2
    4. xy + yz − zx
    5. 2x2y − 5yz + xy2
    6. x3 − y3 − z3
  6. If p = −2, q = −1 and r = 3, find the value of
    1. p2 + q2 − r2
    2. 2p2 − q2 + 3r
    3. p − q − r
    4. p3 + q3 + r3 + 3pqr
    5. p4 +q4 - r4
    6. 3p2q + 5pq2 + 2pqr
  7. Write the coefficient of
    1. x in 13x
    2. y in −5y
    3. y2 in 8xy2z
    4. z in −7xz
    5. p in −2pqr
    6. a in 6ab
    7. x3 in x3
    8. x2 in −x2
  8. Write die numerical coefficient of
    1. ab
    2. −6bc
    3. 7xyz
    4. −2x3y2z
  9. Write the constant term of
    1. 3x2 + 5x + 8
    2. 2x2 − 9
    3. 4y2 − 5y + \(\frac{3}{5}\)
    4. z3 - 2z2 + z − \(\frac{8}{3}\)
  10. Identify the monomials, binomials and trinomials in the following:
    1. −2xyz
    2. 5 + 7x3y3z3
    3. −5x3
    4. a + b − 2c
    5. xy + yz - zx
    6. x5
    7. 2x + 1
    8. −14
    9. ax3 + bx3 + cx + d
  11. Write all the terms of the algebraic expressions:
    1. 4x5 − 6y4 + 7x2y − 9
    2. 9x3 − 5z4 + 7x3y − xyz
  12. Identify the like terms in the following:
    1. a2, b2, −2a2, c2 , 4a
    2. 3x, 4xy, −yz, −zy, \(\frac{1}{2}\)zy
    3. −2xy2, x2y, 5y2x, x2z
    4. abc, ab2c, acb2, c2ab, b2ac, a2bc, cab2
Add:
    1. 3x, 7x
    2. 7y, −9y
    3. 2xy 5xy, −xy
    4. 3x, 2y
    5. 2x2, 3x2, 7x2
    6. 6a3, −4a3, 10a3, − 8a3
    7. 7xyz, −5xyz, 9xyz, − 8xyz
    8. x2 −a2, − 5x2 + 2a2, − 4x2 + 4a2
    1. x − 3y − 2z, 5x + 7y − z and −7x − 2y + 4z
    2. m2 − 4m + 5, −2m2 + 6m − 6 and −m2 − 2m − 7
    3. 2x2 − 3xy + y2, −7x2 − 5xy − 2y2 and 4x2 + xy − 6y2
    4. 4xy − 5yz − 7zx, −5xy + 2yz + zx and −2xy − 3yz + 3zx
    1. 3a − 2b + 5c, 2a + 5b − 7c, − a − b + c
    2. 8a − 6ab + 5b, 6a − ab − 8b, − 4a + 2ab + 3b
    3. 2x3 − 3x2 + 7x − 8, − 5x3 + 2x2 − 4x + 1, 3 − 6x + 5x2 − x3
    4. 2x2 − 8xy + 7y2 − 8xy2, 2xy2 + 6xy − y2 + 3x2, 4y2 − xy − x2 + xy2
    5. x3 + y3 − Z3 + 3xyz, − x3 + y3 + z3 − 6xyz, x3 − y3 − z
    6. 2 + x − x2 + 6x3, − 6 − 2x + 4x2 − 3x3, 2 + x2, 3 − x3 + 4x − 2x
Subtract:
    1. 5x from 2x
    2. −xy from 6xy
    3. 3a from 5b
    4. −7x from 9y
    5. 10x2 from −7x2
    6. a2 − b2 from b2 − a2
    1. 5a + 7b − 2c from 3a − 7b + 4c
    2. a − 2b − 3c from −2a + 5b − 4c
    3. 5x2 − 3xy + y2 from 7x2 − 2xy − 4y2
    4. 6x3 − 7x2 + 5x − 3 from 4 − 5x + 6x2 − 8x3
    5. x3 + 2x2y + 6xy2 − y3 from y3 − 3xy2
    6. −11x2y2 + 7xy − 6 from 9x2y2 − 6xy + 9
    7. −2a + b + 6d from 5a − 2b − 3c
Simplify:
    1. 2p3 − 3p2 + 4p5 − 6p3 + 2p2 − 8p − 2 + 6p + 8
    2. 2x2 − xy + 6x − 4y + 5xy − 4x + 6x + 3y
    3. x4 − 6x3 + 2x − 7 + 7x3 − x + 5x2 + 2 − x4
    1. a − (b − 2a)
    2. 4x − (3y − x + 2z)
    1. (a2 + b2 + 2ab) − (a2 + b2 − 2ab)
    2. −3(a + b) + 4(2a − 3b) − (2a − b)
    3. −4x2 + {(2x2 − 3) − (4 − 3x2)}
    4. −2(x2 − y2 + xy) − 3(x2 + y2 − xy)
    5. a − [2b − {3a − (2b − 3c)}]
    6. − x + [5y − {x − (5y − 2x)}]
    7. 86 − [15x − 7(6x − 9) − 2{10x − 5(2 − 3x)}]
    8. 12x − [3x2 + 5x2 − {7x2 − (4 − 3x − x3) + 6x3} − 3x]
    9. 5a − [a2 − {2a(1 − a + 4a2)− 3a(a2 − 5a3)}] − 8a
    10. 3 − [x − {2y −(5x + y − 3) + 2x2} −(x2 − 3y)]
    11. xy − [yz − zx − {yx −(3y − xz)−(xy − zy)}]
    12. 2a − 3b − [3a − 2b − {a − c − (a − 2b)}]
    13. −a − [a + {a + b − 2a − (a − 2b)} − b]

Simple Equations

  1. Write each of the following statements as an equation:
    1. 5 times a number equals 40.
    2. A number Increased by 8 equals 15.
    3. 25 exceeds a number by 7.
    4. 5 subtracted from thrice a number is 16.
  2. Write a statement for each of the equations, given below:
    1. x − 7 = 14
    2. 2y = 18
    3. 11 + 3x = 17
    4. 2x − 3 = 13
    5. 12y − 30 = 6
    6. \(\frac{2z}{3}\) = 8
  3. Verify by substitution that
    1. the root of 3x − 5 = 7 is x = 4
    2. the root of 3 + 2x = 9 is x = 3
  4. Solve each of the following equations by the trial-and-error method:
    1. y + 9 = 13
    2. x − 7 = 10
    3. 4x = 28
    4. 3y = 36
    5. 11 + x = 19
    6. \(\frac{x}{3}\) = 4
    7. 2x − 3 = 9
    8. \(\frac{1}{2}\)x + 7 = 11
    9. 2y + 4 = 3y
Solve each, of the following equations and. verify the answer in each case:
    1. x – 1 = 0
    2. x + 1 = 0
    3. x – 1 = 5
    4. x + 6 = 2
    5. y – 4 = –7
    6. y – 4 = 4
    7. y + 4 = 4
    8. y + 4 = –4
    9. x + 5 = 12
    1. 3l = 42
    2. \(\frac{b}{2}\) = 6
    3. \(\frac{p}{7}\) = 4
    4. 4x = 25
    5. 8y = 36
    6. \(\frac{z}{3}\) = \(\frac{5}{4}\)
    7. \(\frac{a}{5}\) = \(\frac{7}{15}\)
    8. 20t = –10
    1. 3n – 2 = 46
    2. 5m + 7 = 17
    3. \(\frac{20p}{3}\) = 40
    4. \(\frac{3p}{10}\) = 6
    5. 10p + 10 = 100
    1. 10p = 100
    2. \(\frac{\text{p}}{4} = 5\)
    3. \(\frac{\text{–P}}{3} = 5\)
    4. \(\frac{3p}{4} = 6\)
    5. 3s = –9
    6. 3s + 12 = 0
    7. 3s = 0
    8. 2q = 6
    9. 2q – 6 = 0
    10. 2q + 6 = 0
    11. 2q + 6 = 12
    1. 2y + \(\frac{5}{2}\) = \(\frac{37}{2}\)
    2. 5t + 28 = 10
    3. \(\frac{a}{5}\) + 3 = 2
    4. \(\frac{q}{4}\) + 7 = 5
    5. \(\frac{5}{2}\)x = 10
    6. \(\frac{5}{2}\)x = \(\frac{52}{4}\)
    7. 7m + \(\frac{19}{2}\) = 13
    8. 6z + 10 = –2
    9. \(\frac{3l}{2}\) = \(\frac{2}{3}\)
    10. \(\frac{2b}{3}\) – 5 = 3
    1. 2(x + 4) = 12
    2. 3(n – 5) = 21
    3. 3(n – 5) = – 21
    4. – 4(2 + x) = 8
    5. 4(2 – x) = 8
    1. 4 = 5(p – 2)
    2. – 4 = 5(p – 2)
    3. 16 = 4 + 3(t + 2)
    4. 4 + 5(p – 1) = 34
    5. 0 = 16 + 4(m – 6)

Exponents and Powers

  1. Find the value of:
    1. 26
    2. 93
    3. 112
    4. 54
  2. Express the following in exponential form:
    1. 6 × 6 × 6 × 6
    2. t × t
    3. b × b × b × b
    4. 5 × 5 × 7 × 7 × 7
    5. 2 × 2 × a × a
    6. a × a × a × c × c × c × c × d
  3. Express each of the following numbers using exponential notation:
    1. 512
    2. 343
    3. 729
    4. 3125
  4. Identify the greater number, wherever possible, in each of the following?
    1. 43 या 34
    2. 53 या 35
    3. 28 या 82
    4. 23 या 22
  5. Express each of the following as product of powers of their prime factors:
    1. 648
    2. 405
    3. 540
    4. 3600
Simplify:
    1. 2 × 103
    2. 72 × 22
    3. 23 × 5
    4. 3 × 44
    5. 0 × 102
    6. 52 × 33
    7. 24 × 32
    8. 32 × 104
    1. (– 4)3
    2. (–3) × (–2)3
    3. (–3)2 × (–5)2
Using laws of exponents, simplify and write the answer in exponential form:
    1. 25 × 23
    2. p3 × p2
    3. 43 × 42
    4. a3 × a2 × a7
    5. 53 × 57 × 512
    6. (–4)10 × (–4)20
    1. 29 ÷ 23
    2. 108 ÷ 104
    3. 2015 ÷ 2013
    4. 911 ÷ 97
    5. 713 ÷ 710
    6. 116 ÷ 112
    1. (62)4
    2. (22)100
    3. (750)2
    4. (53)7
    1. 43 × 23
    2. 25 × b5
    3. a2 × t2
    4. 56 × (–2)6
    5. (–2)4 × (–3)4
    6. am × bm
    1. 45 ÷ 35
    2. 25 ÷ b5
    3. (–2)5 ÷ b3
    4. 56 ÷ (–2)6
    1. 80
    2. (−3)0
    3. 40 + 50
    4. 6^0 × 70
    1. (4)−1
    2. (−6)−1
    3. \(\Big(\frac{1}{3}\Big)^{-1}\)
    4. \(\Big(\frac{-2}{3}\Big)^{-1}\)
    1. 32 × 34 × 38
    2. 615 ÷ 610
    3. a3 × a2
    4. 7x × 72
    5. (52)3 ÷ 53
    6. 25 × 55
    7. a4 × b4
    8. (34)3
    9. 8t ÷ 82
  1. Express each of the following as a product of prime factors only in exponential form:
    1. 108 × 192
    2. 270
    3. 729 × 64
    4. 768
  2. Write the following numbers in the expanded forms:
    • 279404,
    • 3006194,
    • 2806196,
    • 120719,
    • 20068
  3. Find the number from each of the following expanded forms:
    1. 8 × 104 + 6 × 103 + 0 × 102 + 4 × 101 + 5 × 100
    2. 4 × 105 + 5 × 103 + 3 × 102 + 2 × 100
    3. 3 × 104 + 7 × 102 + 5 × 100
    4. 9 × 105 + 2 × 102 + 3 × 101
  4. Express the following numbers in standard form:
    1. 5,00,00,000
    2. 70,00,000
    3. 3,18,65,00,000
    4. 3,90,878
    5. 39087.8
    6. 3908.78
  5. Expregs each of the following numbers in standard form:
    1. Diameter of Earth = 12756000 m.
    2. Distance between Earth and Moon = 384000000 m.
    3. Population of India in March 2001 = 1027000000.
    4. Number of stars in a galaxy = 100000000000.
    5. The present age of universe = 12000000000 years.

Join the Discussion

Show Comments

No comments

No comments yet.

Post a Comment

Popular Post

Number Mathematics - Class 6 to 8

1. प्राकृत संख्याएँ 6 अंकों की कुल कितनी संख्याएँ बना सकती है? और सबसे बड़ी तथा छोटी संख्या ज्ञात कीजिए। बिना पुनरावृत्ति किए, 4, 7, 5 और 0 अंकों का प्रयोग करके चार अंकों की सबसे बड़ी और छोटी संख्याएँ बनाइए। अंक 2, 0, 4, 7, 6 तथा 5 से केवल एक-एक बार प्रयोग कर बनने वाली छह अंकों की सबसे बड़ी तथा सबसे छोटी संख्याओं का योग ज्ञात कीजिए। आपके पास 4, 5, 6, 0, 7 और 8 के अंक हैं। इनका प्रयोग करते हुए 6 अंकों की पाँच संख्याएँ बनाइए। अंकों 4, 5, 6, 7, 8 और 9 का प्रयोग कर 8 अंकों की कोई तीन संख्याएँ बनाइए। पढ़ने में सरलता के लिए, अल्प विरामों का प्रयोग कीजिए। अंकों 3, 0 और 4 का प्रयोग कर 6 अंकों की पाँच संख्याएँ बनाइए। अल्प विरामों का भी प्रयोग कीजिए। 8 अंकों की सबसे छोटी संख्या से प्रारंभ करते हुए, आरोही क्रम में अगली पाँच संख्याएँ लिखिए और उन्हें पढिए। निम्नलिखित समूह में सबसे छोटी तथा बड़ी संख्याएँ ज्ञात कीजिए और फिर आरोही ...
By Mr. Guddu Kumar

Number Mathematics Worksheets - Junior

Exercise 1A Write the number between 3456 and 3466. Write the numeral for each of the following numbers: Nine thousand eighteen Fifty-four thousand seventy-three Three lakh two thousand five hundred six Twenty lakh ten thousand eight Six crore five lakh fifty-seven Two crore two lakh two thousand two hundred two Twelve crore twelve lakh twelve thousand twelve Fifteen crore fifty lakh twenty thousand sixty-eight Write each of the following numbers in words: 63,005 7,07,075 34,20,019 3,05,09,012 5,10,03,604 6,18,05,008 19,09,09,900 6,15,30,807 6,60,60,060 Write each of the following numbers in expanded form: 15,768 3,08,927 24,05,609 5,36,18,493 6,06,06,006 9,10,10,510 Writ...
By Mr. Guddu Kumar
Measurement Math - Junior

Measurement Math - Junior

Money Express the following amounts of money in words: 25 rupees 25 paise 8 rupees 50 paise 79 rupees 75 rupees Express the following amounts of money in figures: 20 rupees 75 paise 30 rupees 45 paise 80 rupees 95 paise Express the following amounts of money in words: Rs 20.30 ₹50.75 ₹79.05 Re 0.09 Rs 95.00 Converting the following into paise (p): Rs 2 Rs 9 ₹3 Rs 10 ₹4 Rs 15 ₹3.25 ₹5.10 Rs 1.05 converting the following into rupees and paise: 4020 paise 3080 paise 390 paise 10...
By Mr. Guddu Kumar

Indices and Surds Math - Class 6 to 8

1. प्राकृत संख्याएँ 6 अंकों की कुल कितनी संख्याएँ बना सकती है? और सबसे बड़ी तथा छोटी संख्या ज्ञात कीजिए। बिना पुनरावृत्ति किए, 4, 7, 5 और 0 अंकों का प्रयोग करके चार अंकों की सबसे बड़ी और छोटी संख्याएँ बनाइए। अंक 2, 0, 4, 7, 6 तथा 5 से केवल एक-एक बार प्रयोग कर बनने वाली छह अंकों की सबसे बड़ी तथा सबसे छोटी संख्याओं का योग ज्ञात कीजिए। आपके पास 4, 5, 6, 0, 7 और 8 के अंक हैं। इनका प्रयोग करते हुए 6 अंकों की पाँच संख्याएँ बनाइए। अंकों 4, 5, 6, 7, 8 और 9 का प्रयोग कर 8 अंकों की कोई तीन संख्याएँ बनाइए। पढ़ने में सरलता के लिए, अल्प विरामों का प्रयोग कीजिए। अंकों 3, 0 और 4 का प्रयोग कर 6 अंकों की पाँच संख्याएँ बनाइए। अल्प विरामों का भी प्रयोग कीजिए। 8 अंकों की सबसे छोटी संख्या से प्रारंभ करते हुए, आरोही क्रम में अगली पाँच संख्याएँ लिखिए और उन्हें पढिए। निम्नलिखित समूह में सबसे छोटी तथा बड़ी संख्याएँ ज्ञात कीजिए और फिर आरोही तथा अवरोही क्रम में व्यवस्थित कीजिए। 63521047, 63514759, 73550...
By Mr. Guddu Kumar

Commercial Math - Junior

Temperature Fill in the blanks. A thermometer is used for measuring the … of objects. The temperature of the body of a patient is measured with a … thermometer. Clinical thermometers are marked in … scale. Give the temperatures of the following in Fahrenheit scale as well as Celsius scale. Freezing point of water Boiling point of water Normal body temperature of human beings Convert the temperatures given below to Celsius scale: 122℉ 77℉ 41℉ 122.9℉ 176℉ Convert the temperatures given below to Fahrenheit scale: 110℃ 85℃ 25℃ 80.5℃ 50℃ Averages Find the average of the following: 10 and 16 70 g and 76 g ₹80 and ₹90 40.5 m and 60.3 m 34 l and 20 l 3 \(\frac{1}{2}\) and 6 \(\frac{1}{2}\) ...
By Mr. Guddu Kumar

Algebra Math - Junior

Algebraic Expression Write the following using literals, numbers and signs of basic operations. x increased by 12 y decreased by 7 The difference of a and b. when a > b 5 times x added to 7 times y Sum of x and the quotient of y by 5 x taken away from 4 2 less than the quotient of x by y x multiplied by itself Twice x increased by y Thrice x added to y squared x cubed less than y cubed Write the following in the exponential form: b × b × b × …15 times y × y × y × …20 times 14 × a × a × a × a × b × b × b 6 × x × x × y × y 3 × z × z × z × y × y × x Write down the following in the product form: x 2 y 4 ...
By Mr. Guddu Kumar
Mathematics Revision - Class 10

Mathematics Revision - Class 10

वास्तविक संख्याएँ एक परिमेय और एक अपरिमेय संख्या का योग या अंतर एक अपरिमेय संख्या होती है। एक शून्येतर परिमेय संख्या और एक अपरिमेय संख्या का गुणनफल या भागफल एक अपरिमेय संख्या होती है। मान लीजिए कि x = \(\frac{p}{q}\) एक परिमेय संख्या इस प्रकार है कि q का अभाज्य गुणनखंडन 2 m .5 n के रूप का नहीं है; जहाँ m, n ऋणेतर पूर्णांक हैं। तब, x का असांत आवर्ती दशमलव प्रसार होता है। बहुपद गुणनखंड प्रमेय के प्रयोग द्वारा बीजीय व्यंजकों के गुणनखंड बीजीय सर्वसमिकाएँ : बीजीय सर्वसमिकाएँ - (x + y) 2 = x 2 + 2xy + y 2 (x − y) 2 = x 2 − 2xy + y 2 x 2 − y 2 = (x + y)(x − y) (x + a)(x + b) = x 2 + (a + b)x + ab (x + y + z) 2 = x 2 + y 2 + z 2 + 2xy + 2yz + 2zx (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3 = x 3 + y 3 + 3xy(x + y) (x − y) 3 = x ...
By Mr. Guddu Kumar
Data Handling Math - Junior

Data Handling Math - Junior

Data Handling The sale of shoes of various sizes at a shop on a particular day is given below: 6, 9, 8, 5, 5, 4, 9, 8, 5, 6, 9, 9, 7, 8, 9, 7, 6, 9, 8, 6, 7, 5, 8, 9, 4, 5, 8, 7. Represent the above data in the form of a frequency distribution table. The number of two wheelers owned individually by each of 50 families are listed below. Make a table using tally marks: 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 0, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 2, 1, 1, 4, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 1, 1 The lengths in centimetres (to the nearest centimetre) of 30 carrots are given as follows: 15, 20,22, 22,21, 21, 20, 22, 15, 20, 15, 21, 21, 18, 18, 21, 20, 18, 20, 15, 20, 18, 20, 15, 21, 18, 20, 18, 22 Arrange the data given above in a table using tally marks and answer the following questions. What...
By Mr. Guddu Kumar