Algebraic Expression
- Write the following using literals, numbers and signs of basic
operations.
- x increased by 12
- y decreased by 7
- The difference of a and b. when a > b
- 5 times x added to 7 times y
- Sum of x and the quotient of y by 5
- x taken away from 4
- 2 less than the quotient of x by y
- x multiplied by itself
- Twice x increased by y
- Thrice x added to y squared
- x cubed less than y cubed
- Write the following in the exponential form:
- b × b × b × …15 times
- y × y × y × …20 times
- 14 × a × a × a × a × b × b × b
- 6 × x × x × y × y
- 3 × z × z × z × y × y × x
- Write down the following in the product form:
- x2y4
- 6y5
- 9xy2z
- 10a3b3c3
- If a = 2 and b = 3. find the value of
- a + b
- a2 + ab
- ab − a2
- 2a − 3b
- 5a2 − 2ab
- a3 − b3
- If x = 1, y = 2 and z = 5, find the value of
- 3x − 2y + 4z
- x2 + y2 + z2
- 2x2 − 3y2 + z2
- xy + yz − zx
- 2x2y − 5yz + xy2
- x3 − y3 − z3
- If p = −2, q = −1 and r = 3, find the value of
- p2 + q2 − r2
- 2p2 − q2 + 3r
- p − q − r
- p3 + q3 + r3 + 3pqr
- p4 +q4 - r4
- 3p2q + 5pq2 + 2pqr
- Write the coefficient of
- x in 13x
- y in −5y
- y2 in 8xy2z
- z in −7xz
- p in −2pqr
- a in 6ab
- x3 in x3
- x2 in −x2
- Write die numerical coefficient of
- ab
- −6bc
- 7xyz
- −2x3y2z
- Write the constant term of
- 3x2 + 5x + 8
- 2x2 − 9
- 4y2 − 5y + \(\frac{3}{5}\)
- z3 - 2z2 + z − \(\frac{8}{3}\)
- Identify the monomials, binomials and trinomials in the following:
- −2xyz
- 5 + 7x3y3z3
- −5x3
- a + b − 2c
- xy + yz - zx
- x5
- 2x + 1
- −14
- ax3 + bx3 + cx + d
- Write all the terms of the algebraic expressions:
- 4x5 − 6y4 + 7x2y − 9
- 9x3 − 5z4 + 7x3y − xyz
- Identify the like terms in the following:
- a2, b2, −2a2, c2 , 4a
- 3x, 4xy, −yz, −zy, \(\frac{1}{2}\)zy
- −2xy2, x2y, 5y2x, x2z
- abc, ab2c, acb2, c2ab, b2ac, a2bc, cab2
-
- 3x, 7x
- 7y, −9y
- 2xy 5xy, −xy
- 3x, 2y
- 2x2, 3x2, 7x2
- 6a3, −4a3, 10a3, − 8a3
- 7xyz, −5xyz, 9xyz, − 8xyz
- x2 −a2, − 5x2 + 2a2, − 4x2 + 4a2
-
- x − 3y − 2z, 5x + 7y − z and −7x − 2y + 4z
- m2 − 4m + 5, −2m2 + 6m − 6 and −m2 − 2m − 7
- 2x2 − 3xy + y2, −7x2 − 5xy − 2y2 and 4x2 + xy − 6y2
- 4xy − 5yz − 7zx, −5xy + 2yz + zx and −2xy − 3yz + 3zx
-
- 3a − 2b + 5c, 2a + 5b − 7c, − a − b + c
- 8a − 6ab + 5b, 6a − ab − 8b, − 4a + 2ab + 3b
- 2x3 − 3x2 + 7x − 8, − 5x3 + 2x2 − 4x + 1, 3 − 6x + 5x2 − x3
- 2x2 − 8xy + 7y2 − 8xy2, 2xy2 + 6xy − y2 + 3x2, 4y2 − xy − x2 + xy2
- x3 + y3 − Z3 + 3xyz, − x3 + y3 + z3 − 6xyz, x3 − y3 − z
- 2 + x − x2 + 6x3, − 6 − 2x + 4x2 − 3x3, 2 + x2, 3 − x3 + 4x − 2x
-
- 5x from 2x
- −xy from 6xy
- 3a from 5b
- −7x from 9y
- 10x2 from −7x2
- a2 − b2 from b2 − a2
-
- 5a + 7b − 2c from 3a − 7b + 4c
- a − 2b − 3c from −2a + 5b − 4c
- 5x2 − 3xy + y2 from 7x2 − 2xy − 4y2
- 6x3 − 7x2 + 5x − 3 from 4 − 5x + 6x2 − 8x3
- x3 + 2x2y + 6xy2 − y3 from y3 − 3xy2
- −11x2y2 + 7xy − 6 from 9x2y2 − 6xy + 9
- −2a + b + 6d from 5a − 2b − 3c
-
- 2p3 − 3p2 + 4p5 − 6p3 + 2p2 − 8p − 2 + 6p + 8
- 2x2 − xy + 6x − 4y + 5xy − 4x + 6x + 3y
- x4 − 6x3 + 2x − 7 + 7x3 − x + 5x2 + 2 − x4
-
- a − (b − 2a)
- 4x − (3y − x + 2z)
-
- (a2 + b2 + 2ab) − (a2 + b2 − 2ab)
- −3(a + b) + 4(2a − 3b) − (2a − b)
- −4x2 + {(2x2 − 3) − (4 − 3x2)}
- −2(x2 − y2 + xy) − 3(x2 + y2 − xy)
- a − [2b − {3a − (2b − 3c)}]
- − x + [5y − {x − (5y − 2x)}]
- 86 − [15x − 7(6x − 9) − 2{10x − 5(2 − 3x)}]
- 12x − [3x2 + 5x2 − {7x2 − (4 − 3x − x3) + 6x3} − 3x]
- 5a − [a2 − {2a(1 − a + 4a2)− 3a(a2 − 5a3)}] − 8a
- 3 − [x − {2y −(5x + y − 3) + 2x2} −(x2 − 3y)]
- xy − [yz − zx − {yx −(3y − xz)−(xy − zy)}]
- 2a − 3b − [3a − 2b − {a − c − (a − 2b)}]
- −a − [a + {a + b − 2a − (a − 2b)} − b]
Simple Equations
- Write each of the following statements as an equation:
- 5 times a number equals 40.
- A number Increased by 8 equals 15.
- 25 exceeds a number by 7.
- 5 subtracted from thrice a number is 16.
- Write a statement for each of the equations, given below:
- x − 7 = 14
- 2y = 18
- 11 + 3x = 17
- 2x − 3 = 13
- 12y − 30 = 6
- \(\frac{2z}{3}\) = 8
- Verify by substitution that
- the root of 3x − 5 = 7 is x = 4
- the root of 3 + 2x = 9 is x = 3
- Solve each of the following equations by the trial-and-error method:
- y + 9 = 13
- x − 7 = 10
- 4x = 28
- 3y = 36
- 11 + x = 19
- \(\frac{x}{3}\) = 4
- 2x − 3 = 9
- \(\frac{1}{2}\)x + 7 = 11
- 2y + 4 = 3y
-
- x – 1 = 0
- x + 1 = 0
- x – 1 = 5
- x + 6 = 2
- y – 4 = –7
- y – 4 = 4
- y + 4 = 4
- y + 4 = –4
- x + 5 = 12
-
- 3l = 42
- \(\frac{b}{2}\) = 6
- \(\frac{p}{7}\) = 4
- 4x = 25
- 8y = 36
- \(\frac{z}{3}\) = \(\frac{5}{4}\)
- \(\frac{a}{5}\) = \(\frac{7}{15}\)
- 20t = –10
-
- 3n – 2 = 46
- 5m + 7 = 17
- \(\frac{20p}{3}\) = 40
- \(\frac{3p}{10}\) = 6
- 10p + 10 = 100
-
- 10p = 100
- \(\frac{\text{p}}{4} = 5\)
- \(\frac{\text{–P}}{3} = 5\)
- \(\frac{3p}{4} = 6\)
- 3s = –9
- 3s + 12 = 0
- 3s = 0
- 2q = 6
- 2q – 6 = 0
- 2q + 6 = 0
- 2q + 6 = 12
-
- 2y + \(\frac{5}{2}\) = \(\frac{37}{2}\)
- 5t + 28 = 10
- \(\frac{a}{5}\) + 3 = 2
- \(\frac{q}{4}\) + 7 = 5
- \(\frac{5}{2}\)x = 10
- \(\frac{5}{2}\)x = \(\frac{52}{4}\)
- 7m + \(\frac{19}{2}\) = 13
- 6z + 10 = –2
- \(\frac{3l}{2}\) = \(\frac{2}{3}\)
- \(\frac{2b}{3}\) – 5 = 3
-
- 2(x + 4) = 12
- 3(n – 5) = 21
- 3(n – 5) = – 21
- – 4(2 + x) = 8
- 4(2 – x) = 8
-
- 4 = 5(p – 2)
- – 4 = 5(p – 2)
- 16 = 4 + 3(t + 2)
- 4 + 5(p – 1) = 34
- 0 = 16 + 4(m – 6)
Exponents and Powers
- Find the value of:
- 26
- 93
- 112
- 54
- Express the following in exponential form:
- 6 × 6 × 6 × 6
- t × t
- b × b × b × b
- 5 × 5 × 7 × 7 × 7
- 2 × 2 × a × a
- a × a × a × c × c × c × c × d
- Express each of the following numbers using exponential notation:
- 512
- 343
- 729
- 3125
- Identify the greater number, wherever possible, in each of the
following?
- 43 या 34
- 53 या 35
- 28 या 82
- 23 या 22
- Express each of the following as product of powers of their prime
factors:
- 648
- 405
- 540
- 3600
-
- 2 × 103
- 72 × 22
- 23 × 5
- 3 × 44
- 0 × 102
- 52 × 33
- 24 × 32
- 32 × 104
-
- (– 4)3
- (–3) × (–2)3
- (–3)2 × (–5)2
-
- 25 × 23
- p3 × p2
- 43 × 42
- a3 × a2 × a7
- 53 × 57 × 512
- (–4)10 × (–4)20
-
- 29 ÷ 23
- 108 ÷ 104
- 2015 ÷ 2013
- 911 ÷ 97
- 713 ÷ 710
- 116 ÷ 112
-
- (62)4
- (22)100
- (750)2
- (53)7
-
- 43 × 23
- 25 × b5
- a2 × t2
- 56 × (–2)6
- (–2)4 × (–3)4
- am × bm
-
- 45 ÷ 35
- 25 ÷ b5
- (–2)5 ÷ b3
- 56 ÷ (–2)6
-
- 80
- (−3)0
- 40 + 50
- 6^0 × 70
-
- (4)−1
- (−6)−1
- \(\Big(\frac{1}{3}\Big)^{-1}\)
- \(\Big(\frac{-2}{3}\Big)^{-1}\)
-
- 32 × 34 × 38
- 615 ÷ 610
- a3 × a2
- 7x × 72
- (52)3 ÷ 53
- 25 × 55
- a4 × b4
- (34)3
- 8t ÷ 82
- Express each of the following as a product of prime factors only in
exponential form:
- 108 × 192
- 270
- 729 × 64
- 768
- Write the following numbers in the expanded forms:
- 279404,
- 3006194,
- 2806196,
- 120719,
- 20068
- Find the number from each of the following expanded forms:
- 8 × 104 + 6 × 103 + 0 × 102 + 4 × 101 + 5 × 100
- 4 × 105 + 5 × 103 + 3 × 102 + 2 × 100
- 3 × 104 + 7 × 102 + 5 × 100
- 9 × 105 + 2 × 102 + 3 × 101
- Express the following numbers in standard form:
- 5,00,00,000
- 70,00,000
- 3,18,65,00,000
- 3,90,878
- 39087.8
- 3908.78
- Expregs each of the following numbers in standard form:
- Diameter of Earth = 12756000 m.
- Distance between Earth and Moon = 384000000 m.
- Population of India in March 2001 = 1027000000.
- Number of stars in a galaxy = 100000000000.
- The present age of universe = 12000000000 years.
Join the Discussion