Skip to content

Fraction Decimal Math - Junior आधुनिक विद्या निकेतन ट्यूशन सेंटर Visit: avnlearn.com

1. Fractional Numbers

  1. Write the fraction representing the shaded portion:
    1. (a)
    2. (b)
    3. (c)
    4. (d)
    5. (e)
    6. (f)
  2. Shade the figures to show the fractions written below them.
    1. (a)
    2. (b)
  3. Write a fraction for each of the following:
    1. three-fourths
    2. four-sevenths
    3. two-fifths
    4. three-tenths
    5. one-eighth
    6. five-sixths
    7. eight-ninths
    8. seven-twelfths
  4. Write down the fractional number for each of the following:
    1. \(\frac{2}{3}\)
    2. \(\frac{4}{9}\)
    3. \(\frac{2}{5}\)
    4. \(\frac{7}{10}\)
    5. \(\frac{1}{3}\)
    6. \(\frac{3}{4}\)
  5. Write the numerators and the denominators of the following fractional numbers:
    1. \(\frac{3}{5}\)
    2. \(\frac{4}{7}\)
    3. \(\frac{12}{17}\)
    4. \(\frac{23}{35}\)
    5. \(\frac{57}{61}\)
  6. Write down the fraction in which
    1. Numerator = 5, Denominator = 12
    2. Numerator = 8, Denominator = 15
  7. Represent each of the following fractions on the number line:
    1. \(\frac{3}{8}\)
    2. \(\frac{5}{9}\)
    3. \(\frac{4}{7}\)
    4. \(\frac{2}{5}\)
    5. \(\frac{1}{4}\)
  8. Ring all the like fractions:
    1. \(\frac{1}{10}\), \(\frac{3}{10}\), \(\frac{7}{10}\), \(\frac{10}{7}\)
    2. \(\frac{19}{11}\), \(\frac{11}{19}\), \(\frac{15}{19}\), \(\frac{16}{19}\)
  9. Which of the following are proper fractions, improper fractions and mixed fractions?
    \(\frac{1}{2}\), \(\frac{7}{4}\), 2, \(\frac{15}{8}\), \(\frac{16}{16}\), 3\(\frac{6}{17}\), \(\frac{23}{10}\), \(\frac{3}{2}\), \(\frac{5}{6}\), \(\frac{9}{4}\), \(\frac{8}{8}\), 3, \(\frac{27}{16}\), \(\frac{23}{31}\), \(\frac{10}{13}\), \(\frac{26}{26}\), 3\(\frac{1}{4}\), 1\(\frac{1}{2}\), \(\frac{4}{5}\), 7\(\frac{1}{4}\), \(\frac{12}{1}\), 9\(\frac{1}{3}\), \(\frac{12}{17}\), 21\(\frac{1}{12}\), 29\(\frac{3}{4}\)
  10. Ring the unit fractions: \(\frac{7}{1}\), \(\frac{1}{2}\), \(\frac{1}{7}\), \(\frac{8}{1}\), \(\frac{8}{9}\), \(\frac{1}{9}\)
  11. Write each of the following divisions as fractions:
    1. 3 ÷ 5
    2. 5 ÷ 3
    3. 7 ÷ 9
    4. 9 ÷ 1
  12. Write each of the following fractions in the form of division:
    1. \(\frac{7}{9}\)
    2. \(\frac{8}{11}\)
    3. 2\(\frac{1}{4}\)
    4. \(\frac{8}{8}\)
    5. \(\frac{6}{1}\)
  13. Express each of the following as a mixed fraction or a whole number:
    1. \(\frac{20}{3}\)
    2. \(\frac{11}{5}\)
    3. \(\frac{17}{7}\)
    4. \(\frac{28}{5}\)
    5. \(\frac{19}{6}\)
    6. \(\frac{35}{9}\)
  14. Express the following as improper fractions :
    1. \(7\frac{3}{4}\)
    2. \(2\frac{5}{6}\)
    3. \(10\frac{3}{5}\)
    4. \(8\frac{4}{9}\)
    5. 1\(\frac{1}{2}\)
  15. Write the integral part and the fractional part of the following mixed frachons:
    1. 2\(\frac{3}{4}\)
    2. 4\(\frac{5}{7}\)
    3. 9\(\frac{1}{2}\)
    4. 10\(\frac{7}{8}\)
  16. Fill in the blanks:
    1. \(\frac{2}{3}\) = \(\frac{\cdots}{12}\)
    2. \(\frac{3}{4}\) = \(\frac{9}{\cdots}\)
    3. \(\frac{4}{7}\) = \(\frac{20}{\cdots}\)
    4. \(\frac{29}{32}\) = \(\frac{\cdots}{64}\)
    5. \(\frac{\cdots}{5}\) = \(\frac{6}{15}\)
    6. \(\frac{1}{2}\) = \(\frac{\cdots}{4}\)
  17. Fill in the blanks so that the fractions may be equivalent:
    1. \(\frac{2}{3}\) = \(\frac{2 \times 2}{3 \times \cdots}\) = \(\frac{2 \times \cdots}{3 \times 3}\) = \(\frac{2 \times 5}{3 \times \cdots}\) = \(\frac{2 \times \cdots}{3 \times 6}\)
    2. \(\frac{3}{5}\) = \(\frac{3 \times 2}{5 \times \cdots}\) = \(\frac{3 \times 3}{5 \times \cdots}\) = \(\frac{3 \times \cdots}{5 \times 4}\) = \(\frac{3 \times \cdots}{5 \times 5}\)
    3. \(\frac{5}{8}\) = \(\frac{5 \times 2}{8 \times \cdots}\) = \(\frac{5 \times 3}{8 \times \cdots}\) = \(\frac{5 \times \cdots}{8 \times 7}\) = \(\frac{5 \times \cdots}{8 \times 9}\)
    4. \(\frac{2}{7}\) = \(\frac{2 \times 6}{7 \times \cdots}\) = \(\frac{2 \times 8}{7 \times \cdots}\) = \(\frac{2 \times \cdots}{7 \times 9}\) = \(\frac{2 \times \cdots}{7 \times 10}\)
    1. Write two equivalent fractions of \(\frac{1}{4}\).
    2. Write three equivalent fractons of \(\frac{3}{4}\).
    3. Write four equivalent fractions of \(\frac{2}{5}\).
    4. Write five equivalent fractions of \(\frac{1}{2}\).
  18. Change each of the following fractions to equivalent fractions having the denominator 32:
    1. \(\frac{1}{2}\)
    2. \(\frac{1}{4}\)
    3. \(\frac{3}{8}\)
    4. \(\frac{5}{16}\)
  19. Change each of the following fractions to equivalent fractions having the numerator 48:
    1. \(\frac{2}{3}\)
    2. \(\frac{3}{4}\)
    3. \(\frac{4}{3}\)
    4. \(\frac{8}{19}\)
  20. Are the following fractions equivalent? Write ‘Yes’ or ’No:
    1. \(\frac{1}{2}\) = \(\frac{5}{10}\)
    2. \(\frac{2}{4}\) = \(\frac{6}{7}\)
    3. \(\frac{3}{6}\) = \(\frac{12}{24}\)
    4. \(\frac{4}{9}\) = \(\frac{36}{81}\)
    5. \(\frac{3}{4}\) = \(\frac{3 + 4}{4 + 4}\)
    6. \(\frac{11}{17}\) = \(\frac{11 - 2}{17 - 2}\)
  21. Write ‘True’ or ‘False’:
    1. \(\frac{4}{7}\) = \(\frac{12}{21}\)
    2. \(\frac{3}{5}\) = \(\frac{21}{35}\)
    3. \(\frac{4}{7}\) = \(\frac{24}{42}\)
    4. \(\frac{4}{9}\) = \(\frac{9}{14}\)
    1. Express 6 as a fracton with 5 as the denominator.
    2. Express 3 as a fraction with 8 as the denominator.
  22. Change the following fractions to like fractions:
    1. \(\frac{1}{6}\), \(\frac{1}{9}\)
    2. \(\frac{3}{4}\), \(\frac{5}{12}\)
    3. \(\frac{7}{12}\), \(\frac{8}{15}\)
    4. \(\frac{7}{16}\), \(\frac{11}{24}\)
    5. \(\frac{2}{5}\), \(\frac{3}{10}\), \(\frac{4}{15}\)
    6. \(\frac{1}{8}\), \(\frac{5}{16}\), \(\frac{9}{32}\)
Write the correct sign, > or < or =, in each box
    1. \(\frac{9}{10}\)\(\frac{7}{10}\)
    2. \(\frac{3}{7}\)\(\frac{6}{7}\)
    3. \(\frac{6}{11}\)\(\frac{5}{11}\)
    1. \(\frac{7}{8}\)\(\frac{7}{10}\)
    2. \(\frac{4}{11}\)\(\frac{4}{9}\)
    3. \(\frac{11}{14}\)\(\frac{11}{15}\)
    1. \(\frac{2}{3}\)\(\frac{3}{4}\)
    2. \(\frac{1}{2}\)\(\frac{1}{3}\)
    3. \(\frac{2}{5}\)\(\frac{6}{11}\)
    4. \(\frac{7}{12}\)\(\frac{2}{5}\)
    5. \(\frac{3}{7}\)\(\frac{4}{5}\)
    6. \(\frac{5}{16}\)\(\frac{4}{17}\)
    1. 2\(\frac{1}{2}\)\(\frac{3}{2}\)
    2. \(\frac{4}{3}\) □ 4\(\frac{1}{3}\)
    3. 3\(\frac{2}{3}\)\(\frac{11}{3}\)
Write the following fractons in ascending and descending order:
    1. \(\frac{5}{11}\), \(\frac{9}{11}\), \(\frac{7}{11}\), \(\frac{4}{11}\)
    2. \(\frac{11}{12}\), \(\frac{5}{12}\), \(\frac{7}{12}\), \(\frac{1}{12}\)
    1. \(\frac{15}{17}\), \(\frac{15}{19}\), \(\frac{15}{18}\), \(\frac{15}{31}\)
    2. \(\frac{31}{37}\), \(\frac{31}{49}\), \(\frac{31}{36}\), \(\frac{31}{45}\)
    1. \(\frac{1}{4}\), \(\frac{3}{4}\), \(\frac{1}{6}\), \(\frac{7}{10}\)
    2. \(\frac{1}{5}\), \(\frac{2}{15}\), \(\frac{3}{10}\), \(\frac{7}{20}\)
    3. \(\frac{2}{3}\), \(\frac{4}{9}\), \(\frac{5}{12}\), \(\frac{5}{6}\)
    4. \(\frac{2}{7}\), \(\frac{3}{14}\), \(\frac{5}{28}\), \(\frac{4}{21}\)
  1. Find out if the following fractions are in the lowest terms:
    1. \(\frac{6}{9}\)
    2. \(\frac{4}{15}\)
    3. \(\frac{14}{21}\)
    4. \(\frac{72}{77}\)
    5. \(\frac{51}{85}\)
    6. \(\frac{88}{91}\)
  2. Which of the following fractions are not in the lowest terms?
    1. \(\frac{6}{9}\)
    2. \(\frac{7}{9}\)
    3. \(\frac{10}{70}\)
    4. \(\frac{85}{91}\)
    5. \(\frac{88}{117}\)
    6. \(\frac{108}{135}\)
  3. Reduce to the lowest terms:
    1. \(\frac{2}{4}\)
    2. \(\frac{4}{8}\)
    3. \(\frac{5}{10}\)
    4. \(\frac{6}{8}\)
    5. \(\frac{2}{10}\)
    6. \(\frac{3}{12}\)
    7. \(\frac{4}{12}\)
    8. \(\frac{8}{12}\)
    9. \(\frac{2}{12}\)
    10. \(\frac{7}{14}\)
    11. \(\frac{9}{15}\)
    12. \(\frac{4}{16}\)
    13. \(\frac{8}{20}\)
    14. \(\frac{9}{24}\)
    15. \(\frac{16}{12}\)
    16. \(\frac{54}{12}\)
    17. \(\frac{24}{20}\)
    18. \(\frac{56}{40}\)
  4. Add together:
    1. \(\frac{5}{17}\), \(\frac{2}{17}\)
    2. \(\frac{1}{12}\), \(\frac{4}{12}\)
    3. \(\frac{4}{19}\), \(\frac{15}{19}\)
    4. \(\frac{7}{22}\), \(\frac{25}{22}\)
Find
    1. \(\frac{2}{5}\) + \(\frac{1}{5}\)
    2. \(\frac{4}{10}\) + \(\frac{3}{10}\)
    3. \(\frac{5}{17}\) + \(\frac{2}{17}\)
    4. \(\frac{4}{18}\) + \(\frac{3}{18}\)
    5. \(\frac{2}{13}\) + \(\frac{4}{13}\)
    6. \(\frac{4}{19}\) + \(\frac{15}{19}\)
    1. \(\frac{4}{19}\) + \(\frac{7}{19}\) + \(\frac{9}{19}\)
    2. \(\frac{5}{12}\) + \(\frac{7}{12}\) + \(\frac{1}{12}\)
    3. \(\frac{15}{8}\) + \(\frac{7}{8}\) + \(\frac{1}{8}\)
    4. \(\frac{13}{10}\) + \(\frac{3}{10}\) + \(\frac{19}{10}\)
    1. \(\frac{3}{4}\) + \(\frac{5}{8}\)
    2. \(\frac{2}{5}\) + \(\frac{4}{15}\)
    3. \(\frac{2}{5}\) + \(\frac{1}{4}\)
    4. \(\frac{3}{7}\) + \(\frac{2}{3}\)
    5. \(\frac{2}{3}\) + \(\frac{4}{21}\)
    6. \(\frac{3}{10}\) + \(\frac{7}{20}\)
    7. \(\frac{3}{8}\) + \(\frac{25}{24}\)
    8. \(\frac{4}{15}\) + \(\frac{7}{30}\)
    9. \(\frac{3}{16}\) + \(\frac{35}{32}\)
    1. \(\frac{1}{2}\) + \(\frac{3}{4}\) + \(\frac{5}{8}\)
    2. \(\frac{3}{4}\) + \(\frac{5}{6}\) + \(\frac{7}{12}\)
    3. \(\frac{2}{5}\) + \(\frac{13}{10}\) + \(\frac{7}{15}\)
    4. \(\frac{3}{5}\) + \(\frac{7}{10}\) + \(\frac{31}{20}\)
    5. \(\frac{1}{2}\) + \(\frac{5}{6}\) + \(\frac{27}{12}\)
    6. \(\frac{2}{13}\) + \(\frac{1}{26}\) + \(\frac{4}{39}\)
    7. \(\frac{1}{2}\) + \(\frac{3}{4}\) + \(\frac{5}{8}\) + \(\frac{7}{16}\)
    8. \(\frac{2}{3}\) + \(\frac{3}{5}\) + \(\frac{1}{15}\) + \(\frac{4}{5}\)
    9. \(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) + \(\frac{1}{5}\)
    10. \(\frac{5}{12}\) + \(\frac{2}{3}\) + \(\frac{3}{4}\) + \(\frac{5}{6}\)
    1. 5 + \(\frac{3}{11}\)
    2. 4 + \(\frac{6}{13}\)
    3. 7 + \(\frac{11}{4}\)
    4. \(\frac{11}{15}\) + 0
    1. 5\(\frac{2}{9}\) + 2\(\frac{4}{9}\)
    2. 2\(\frac{1}{2}\) + 3\(\frac{1}{2}\) + 4\(\frac{1}{4}\)
    3. 2\(\frac{1}{6}\) + 3\(\frac{5}{6}\) + 10\(\frac{1}{6}\)
    4. 3\(\frac{1}{13}\) + 1\(\frac{4}{13}\) + 2\(\frac{3}{13}\)
    1. 2\(\frac{1}{2}\) + 1\(\frac{2}{3}\)
    2. 3\(\frac{1}{3}\) + 2\(\frac{2}{9}\)
    3. 4\(\frac{3}{4}\) + 3\(\frac{1}{8}\)
    4. 6\(\frac{3}{8}\) + 10\(\frac{1}{16}\)
    5. 3\(\frac{5}{8}\) + 2\(\frac{7}{12}\)
    6. 2\(\frac{2}{15}\) + 1\(\frac{9}{20}\)
    1. 2\(\frac{5}{8}\) + 2\(\frac{3}{4}\) + 2\(\frac{1}{2}\)
    2. 3\(\frac{3}{4}\) + 5\(\frac{1}{8}\) + 1\(\frac{3}{16}\)
    3. 3\(\frac{1}{3}\) + 4\(\frac{5}{9}\) + 2\(\frac{5}{6}\)
    4. 4\(\frac{2}{7}\) + 1\(\frac{10}{21}\) + 5\(\frac{2}{3}\)
    5. 1\(\frac{5}{8}\) + 2\(\frac{7}{12}\) + 3\(\frac{3}{4}\)
    6. 2\(\frac{1}{16}\) + 3\(\frac{5}{12}\) + 4\(\frac{1}{4}\)
    1. \(\frac{11}{8}\) + 2\(\frac{3}{16}\)
    2. 1\(\frac{3}{10}\) + \(\frac{7}{10}\)
    3. 2 + \(\frac{6}{21}\) + 3\(\frac{4}{7}\)
    4. 4\(\frac{3}{4}\) + 3 + 3\(\frac{1}{12}\)
    1. \(\frac{7}{9}\)\(\frac{4}{9}\)
    2. \(\frac{7}{12}\)\(\frac{6}{12}\)
    3. \(\frac{25}{36}\)\(\frac{11}{36}\)
    4. \(\frac{20}{51}\)\(\frac{16}{51}\)
    5. \(\frac{79}{89}\)\(\frac{47}{89}\)
    6. \(\frac{15}{92}\)\(\frac{13}{92}\)
    1. \(\frac{3}{8}\)\(\frac{1}{4}\)
    2. \(\frac{23}{40}\)\(\frac{1}{8}\)
    3. \(\frac{11}{12}\)\(\frac{5}{16}\)
    4. \(\frac{7}{16}\)\(\frac{5}{24}\)
    5. \(\frac{8}{15}\)\(\frac{3}{20}\)
    6. \(\frac{7}{24}\)\(\frac{5}{36}\)
    1. 12\(\frac{3}{4}\)\(\frac{1}{2}\)
    2. 7\(\frac{7}{9}\)\(\frac{1}{3}\)
    3. 4\(\frac{3}{7}\)\(\frac{1}{14}\)
    1. 6\(\frac{3}{4}\) − 4\(\frac{1}{4}\)
    2. 7\(\frac{8}{9}\) − 5\(\frac{2}{3}\)
    3. 8\(\frac{9}{10}\) − 3\(\frac{3}{5}\)
    4. 3\(\frac{2}{16}\) − 1\(\frac{3}{8}\)
    5. 4\(\frac{5}{18}\) − 2\(\frac{4}{9}\)
    6. 5\(\frac{3}{8}\) − 1\(\frac{1}{24}\)
    1. 3 − \(\frac{2}{11}\)
    2. 6 − \(\frac{5}{12}\)
    3. 8 − 3\(\frac{2}{5}\)
    1. \(\frac{3}{10}\) − 0
    2. \(\frac{15}{8}\) − 0
    3. 2\(\frac{1}{3}\) − 0
    4. \(\frac{2}{9}\)\(\frac{2}{9}\)
    5. \(\frac{10}{3}\)\(\frac{10}{3}\)
    6. 3\(\frac{4}{9}\) − 3\(\frac{4}{9}\)
  1. Use repeated addition to find the following:
    1. 3 × \(\frac{1}{4}\)
    2. 6 × \(\frac{3}{5}\)
    3. 2 × \(\frac{4}{7}\)
    4. 4 × \(\frac{2}{3}\)
Multiply:
    1. \(\frac{7}{2}\) of 6
    2. \(\frac{5}{12}\) of 60
    3. \(\frac{8}{3}\) of 9
    4. \(\frac{2}{15}\) of 75
    1. \(\frac{5}{11}\) of ₹ 220
    2. \(\frac{4}{9}\) of 54 metres
    3. \(\frac{6}{7}\) of 35 litres
    4. \(\frac{1}{6}\) of an hour
    5. \(\frac{5}{6}\) of an year
    6. \(\frac{7}{20}\) of a kg
    7. \(\frac{9}{20}\) of a metre
    8. \(\frac{7}{8}\) of a day
    9. \(\frac{3}{7}\) of a week
    10. \(\frac{7}{50}\) of a litre
    1. How much is 4 times \(\frac{1}{8}\)?
    2. How much is 5 times \(\frac{3}{20}\)?
Find:
    1. 7 × \(\frac{2}{11}\)
    2. 8 × \(\frac{7}{9}\)
    3. 9 × \(\frac{4}{11}\)
    4. \(\frac{5}{12}\) × 11
    5. \(\frac{17}{11}\) × 12
    6. \(\frac{1}{13}\) × 28
    1. 3\(\frac{1}{4}\) × 5
    2. 4\(\frac{1}{3}\) × 7
    3. 9\(\frac{1}{2}\) × 3
    4. 2\(\frac{1}{3}\) × 8
    5. 3\(\frac{1}{2}\) × 9
    6. 4\(\frac{1}{2}\) × 7
    7. 10 × 6\(\frac{1}{3}\)
    8. 11 × 2\(\frac{1}{3}\)
    9. 17 × 1\(\frac{1}{2}\)
    1. \(\frac{2}{3}\) × \(\frac{2}{7}\)
    2. \(\frac{4}{7}\) × \(\frac{2}{5}\)
    3. \(\frac{6}{13}\) × \(\frac{2}{5}\)
    4. \(\frac{7}{15}\) × \(\frac{5}{8}\)
    5. \(\frac{9}{16}\) × \(\frac{4}{9}\)
    6. \(\frac{8}{13}\) × \(\frac{7}{12}\)
    1. 1\(\frac{1}{2}\) × \(\frac{5}{7}\)
    2. 1\(\frac{1}{3}\) × \(\frac{7}{8}\)
    3. 2\(\frac{1}{2}\) × \(\frac{3}{8}\)
    4. \(\frac{9}{11}\) × 2\(\frac{1}{4}\)
    5. \(\frac{6}{13}\) × 3\(\frac{2}{5}\)
    6. \(\frac{4}{7}\) × 5\(\frac{1}{3}\)
    1. 4\(\frac{1}{4}\) × 1\(\frac{1}{3}\)
    2. 9\(\frac{1}{12}\) × 2\(\frac{2}{5}\)
    3. 5\(\frac{1}{3}\) × 5\(\frac{1}{4}\)
    1. 2\(\frac{2}{3}\) × \(\frac{5}{12}\)
    2. 1\(\frac{3}{4}\) × \(\frac{8}{15}\)
    3. \(\frac{12}{25}\) × 6\(\frac{2}{3}\)
    4. 20 × 3\(\frac{1}{5}\)
    5. 1\(\frac{1}{4}\) × 2\(\frac{2}{5}\)
    6. 3\(\frac{3}{8}\) × 5\(\frac{1}{9}\)
    7. 5\(\frac{1}{7}\) × 5\(\frac{1}{9}\)
    8. 8\(\frac{1}{8}\) × 28
    1. 5 times 1\(\frac{4}{15}\)
    2. 12 times 2\(\frac{5}{24}\)
  1. Fill in the blanks:
    1. \(\frac{1}{4}\) of a rupee = □ paise
    2. \(\frac{3}{8}\) of two rupees = □ paise
    3. \(\frac{3}{5}\) of fifty rupees = □ rupees
    4. \(\frac{7}{10}\) of four rupees = □ paise
  2. Fill in the blanks:
    1. \(\frac{2}{5}\) of a kg = □ g
    2. \(\frac{1}{100}\) of 30 kg = □ g
  3. Write the reciprocals (multiplicative inverses) of the following:
    1. \(\frac{1}{2}\)
    2. \(\frac{1}{3}\)
    3. \(\frac{1}{4}\)
    4. 7
    5. 11
    6. 45
    7. \(\frac{4}{5}\)
    8. \(\frac{6}{7}\)
    9. \(\frac{9}{11}\)
    10. 1\(\frac{4}{5}\)
    11. 2\(\frac{3}{7}\)
    12. 3\(\frac{4}{5}\)
Divide:
    1. 3 by 1\(\frac{1}{2}\)
    2. 5 by 2\(\frac{1}{2}\)
    3. 4 by 3\(\frac{1}{3}\)
    4. 1\(\frac{1}{2}\) by 3
    5. 2\(\frac{1}{2}\) by 5
    6. 4\(\frac{2}{3}\) by 6
    7. \(\frac{2}{7}\) by 5
    8. \(\frac{12}{7}\) by 14
    9. 15 by \(\frac{3}{10}\)
    10. \(\frac{4}{7}\) by \(\frac{2}{3}\)
    11. \(\frac{3}{11}\) by \(\frac{2}{7}\)
    12. \(\frac{7}{6}\) by \(\frac{2}{21}\)
    13. \(\frac{3}{4}\) by 3
    14. \(\frac{8}{5}\) by 4
    15. \(\frac{14}{25}\) by 7
    16. \(\frac{1}{2}\) by 3
    17. \(\frac{3}{16}\) by 3
    18. \(\frac{14}{15}\) by 7
    19. \(\frac{1}{6}\) by \(\frac{1}{3}\)
    20. \(\frac{2}{15}\) by \(\frac{1}{15}\)
    21. \(\frac{1}{5}\) by \(\frac{2}{25}\)
    22. \(\frac{7}{9}\) by \(\frac{28}{45}\)
    23. \(\frac{11}{12}\) by \(\frac{33}{24}\)
    24. \(\frac{15}{16}\) by \(\frac{75}{128}\)
Find:
    1. 1\(\frac{1}{2}\) ÷ 3
    2. 1\(\frac{1}{3}\) ÷ 4
    3. 2\(\frac{1}{5}\) ÷ 11
    4. 3\(\frac{2}{7}\) ÷ 92
    5. 63 ÷ 2\(\frac{1}{4}\)
    6. 72 ÷ 9\(\frac{1}{7}\)
    1. \(\frac{1}{2}\) ÷ 2
    2. \(\frac{1}{4}\) ÷ 2
    3. \(\frac{1}{2}\) ÷ 4
    4. \(\frac{1}{3}\) ÷ 3
    5. \(\frac{1}{5}\) ÷ 4
    6. \(\frac{1}{6}\) ÷ 5
    1. 2\(\frac{1}{3}\) ÷ 7
    2. 3\(\frac{1}{4}\) ÷ 26
    3. 5\(\frac{1}{4}\) ÷ 42
    4. 7\(\frac{2}{3}\) ÷ 46
    5. 11\(\frac{2}{5}\) ÷ 57
    6. 12\(\frac{3}{4}\) ÷ 102
    1. 4 ÷ \(\frac{4}{5}\)
    2. 13 ÷ \(\frac{1}{6}\)
    3. 15 ÷ \(\frac{1}{8}\)
    1. 16 ÷ \(\frac{8}{3}\)
    2. 21 ÷ 3\(\frac{1}{2}\)
    3. 25 ÷ 7\(\frac{1}{2}\)
    4. 35 ÷ 3\(\frac{3}{4}\)
    5. 67 ÷ 9\(\frac{4}{7}\)
    6. 99 ÷ 2\(\frac{5}{47}\)
    1. \(\frac{12}{49}\) ÷ \(\frac{3}{7}\)
    2. \(\frac{25}{39}\) ÷ \(\frac{10}{13}\)
    3. \(\frac{16}{63}\) ÷ \(\frac{4}{27}\)
    4. \(\frac{4}{7}\) ÷ \(\frac{2}{21}\)
    5. \(\frac{5}{48}\) ÷ \(\frac{5}{24}\)
    6. \(\frac{3}{28}\) ÷ \(\frac{5}{14}\)
    1. 1\(\frac{1}{4}\) ÷ \(\frac{5}{8}\)
    2. \(\frac{12}{49}\) ÷ \(\frac{11}{15}\)
    3. \(\frac{12}{49}\) ÷ \(\frac{27}{50}\)
    4. 1\(\frac{2}{3}\) ÷ 6\(\frac{1}{4}\)
    5. 3\(\frac{3}{10}\) ÷ 5\(\frac{1}{2}\)
    6. 10\(\frac{1}{2}\) ÷ 4\(\frac{2}{3}\)
    1. 3\(\frac{1}{4}\) ÷ \(\frac{1}{8}\)
    2. 5\(\frac{2}{3}\) ÷ \(\frac{1}{6}\)
    3. 16\(\frac{3}{5}\) ÷ \(\frac{1}{25}\)
    4. \(\frac{1}{5}\) ÷ 1\(\frac{1}{10}\)
    5. \(\frac{2}{7}\) ÷ 2\(\frac{3}{14}\)
    6. \(\frac{3}{8}\) ÷ 2\(\frac{3}{16}\)
    7. 6\(\frac{2}{3}\) ÷ 2\(\frac{2}{9}\)
    8. 11\(\frac{2}{5}\) ÷ 3\(\frac{3}{4}\)
    9. 6\(\frac{2}{3}\) ÷ 13\(\frac{1}{3}\)
Simplify:
    1. \(\frac{11}{12}\)\(\frac{5}{12}\) + \(\frac{1}{12}\)
    2. \(\frac{10}{13}\) + \(\frac{5}{13}\)\(\frac{3}{13}\)
    3. \(\frac{16}{23}\)\(\frac{3}{23}\)\(\frac{11}{23}\)
    4. \(\frac{21}{25}\)\(\frac{7}{25}\) + \(\frac{11}{25}\)
    1. \(\frac{8}{9}\) + \(\frac{1}{9}\)\(\frac{7}{9}\) + \(\frac{4}{9}\)
    2. \(\frac{8}{17}\) + \(\frac{3}{17}\) + \(\frac{1}{17}\)\(\frac{11}{17}\)
    1. \(\frac{7}{8}\)\(\frac{3}{4}\) + \(\frac{1}{2}\)
    2. \(\frac{5}{12}\) + \(\frac{5}{8}\)\(\frac{5}{16}\)
    3. 3 − \(\frac{11}{12}\) + \(\frac{5}{8}\)
    4. 11 + \(\frac{7}{9}\)\(\frac{5}{6}\)
    1. 3\(\frac{6}{7}\) − 1\(\frac{2}{3}\)\(\frac{20}{21}\)
    2. 1\(\frac{1}{15}\) − 2\(\frac{3}{5}\) + 5\(\frac{7}{10}\)
    3. 4 + 1\(\frac{5}{6}\) − 2\(\frac{3}{8}\)
    4. 5 − 2\(\frac{1}{7}\) − 1\(\frac{3}{5}\)
    1. \(\frac{42}{65}\) × \(\frac{39}{59}\) × \(\frac{24}{27}\)
    2. 6\(\frac{7}{8}\) × 6\(\frac{2}{11}\) × \(\frac{3}{10}\)
    3. 2\(\frac{1}{9}\) × \(\frac{5}{38}\) × 2\(\frac{1}{5}\)
    4. 4\(\frac{5}{8}\) × \(\frac{27}{35}\) × 7 × 1\(\frac{3}{37}\)
    5. \(\frac{5}{21}\) × \(\frac{7}{15}\) × 2\(\frac{1}{4}\) × \(\frac{12}{35}\) × 23\(\frac{1}{3}\)
    1. \(\frac{4}{5}\) ÷ \(\frac{7}{15}\) of \(\frac{8}{9}\)
    2. \(\frac{4}{5}\) ÷ \(\frac{7}{15}\) × \(\frac{8}{9}\)
    3. 5\(\frac{1}{4}\) ÷ \(\frac{3}{7}\) × \(\frac{1}{2}\)
    4. 5\(\frac{1}{4}\) ÷ \(\frac{3}{7}\) of \(\frac{1}{2}\)
    5. \(\frac{7}{8}\) + 2\(\frac{5}{6}\)\(\frac{11}{12}\) × 3\(\frac{3}{11}\)
    6. 3\(\frac{3}{4}\) ÷ \(\frac{7}{8}\) × 4\(\frac{1}{6}\) × 1\(\frac{13}{15}\)
    7. \(\frac{1}{2}\) + 1\(\frac{1}{2}\) ÷ 1\(\frac{1}{2}\) × \(\frac{2}{3}\)\(\frac{1}{4}\)
    8. 1\(\frac{4}{5}\) − 2\(\frac{3}{4}\) of \(\frac{8}{11}\) + \(\frac{3}{8}\) ÷ \(\frac{9}{10}\)
    9. 9\(\frac{1}{3}\) ÷ \(\frac{3}{5}\) of \(\frac{7}{9}\) × \(\frac{4}{5}\)
    10. \(\frac{3}{5}\) of 1\(\frac{3}{7}\) ÷ \(\frac{2}{5}\)\(\frac{1}{2}\) + \(\frac{2}{3}\) × \(\frac{6}{7}\)
    11. 7\(\frac{1}{3}\) ÷ 3\(\frac{2}{3}\) of 2 + 4\(\frac{1}{2}\) ÷ 2\(\frac{1}{4}\) − 2\(\frac{1}{2}\)
    12. 25 of \(\frac{3}{5}\) ÷ 1\(\frac{2}{3}\) + 3 of \(\frac{1}{3}\) ÷ 10
    1. \(\Big(\frac{4}{9} + \frac{7}{9}\Big) \times 2\frac{1}{4}\)
    2. \(\frac{3}{8} \div \Big(1\frac{7}{8} - \frac{3}{4}\Big)\)
    3. \(6 + \Big\lbrace 1 + \frac{1}{2} + \Big(\frac{3}{4} - \frac{1}{2}\Big)\Big\rbrace\)
    4. \(\Big\lbrace \Big(13\frac{1}{3} - 12\frac{1}{2}\Big) \div \frac{5}{6} \Big\rbrace \text{ of } \frac{3}{8}\)
    5. \(2\frac{1}{2} - \Big\lbrace \frac{13}{4} - \Big(3\frac{1}{2} - 1\frac{3}{4}\Big)\Big\rbrace\)
    6. 140 - [4 + {12 × (7 − 5)}]
    7. \(4\frac{1}{2} - \Big[1 + \Big\lbrace 2\frac{1}{2} - \Big(\frac{1}{3} - \frac{1}{4}\Big)\Big\rbrace\Big]\)
    8. \(3\frac{1}{12} - \Big[1\frac{3}{4} + \Big\lbrace 2\frac{1}{2} - \Big(1\frac{1}{2} - \frac{1}{3}\Big)\Big\rbrace\Big]\)
    9. \(3\frac{1}{3} \text{ of } \frac{1}{2} + 2 \div \Big[2 \times \Big\lbrace 2 - \Big( 2 - \frac{1}{5} \Big) \Big\rbrace\Big]\)
    10. \(5\frac{1}{2} - \Big[2\frac{1}{3} \div \Big\lbrace \frac{3}{4} - \frac{1}{2} \times \Big(\frac{2}{3} - \frac{1}{24}\Big)\Big\rbrace\Big]\)
    11. \(\Big[2 + 5 \times \Big\lbrace 1\frac{1}{2} + \Big(\frac{3}{4} - \frac{1}{10}\Big)\Big\rbrace\Big] + 1\frac{1}{2}\)

2. Decimals

  1. Write each of the following in figures:
    1. Fifty-eight point six three
    2. One hundred twenty-four point four two five
    3. Seven point seven six
    4. Nineteen point eight
    5. Four hundred four point zero four four
    6. Point one seven three
    7. Point zero one five
  2. Read each of the following decimal fractions:
    1. 2.3
    2. 15.67
    3. 278.789
    4. 1234.5678
  3. Write the integral parts of the following decimal fractions:
    1. 7.1
    2. 12.651
    3. 167.4
    4. 2345.678
  4. Write the fractional parts of the following decimal fractions:
    1. 6.5
    2. 27.34
    3. 175.678
    4. 2929.38387
  5. Write the place value of each digit in each of the following decimals:
    1. 275.269
    2. 46.075
    3. 5370.34
    4. 186.209
  6. Write each of the following decimals in expanded form:
    1. 24.675
    2. 0.294
    3. 8.006
    4. 4615.72
  7. Write each of the following in decimal form:
    1. 40 + 6 + \(\frac{7}{10}\) + \(\frac{9}{100}\)
    2. 600 + 5 + \(\frac{7}{10}\) + \(\frac{9}{100}\)
    3. 800 + 5 + \(\frac{8}{10}\) + \(\frac{6}{100}\)
    4. 30 + 9 + \(\frac{4}{10}\) + \(\frac{8}{100}\)
    5. 700 + 30 + 1 + \(\frac{8}{10}\) + \(\frac{4}{100}\)
    6. 500 + 70 + 8 + \(\frac{3}{10}\) + \(\frac{1}{100}\) + \(\frac{6}{1000}\)
  8. Fill in the blanks with >,< or =.
    1. 0.1 □ 0.01
    2. 2.32 □ 1.99
    3. 16.123 □ 16.12300
    4. 252.9111 □ 252.099
    5. 13.99 □ 14
    6. 8.431 □ 8.413
  9. Arrange the following decimals in ascending order:
    1. 5.8. 7.2. 5.69. 7.14, 5.06
    2. 0.6, 6.6, 6.06, 66.6, 0.06
    3. 6.54. 6.45, 6.4, 6.5, 6.05
    4. 3.3, 3.303, 3.033, 0.33, 3.003
  10. Arrange the following decimals in descending order:
    1. 7.3. 8.73. 73.03. 7.33. 8.073
    2. 3.3, 3.03, 30.3, 30.03, 3.003
    3. 2.7. 7.2. 2.27. 2.72, 2.02, 2.007
    4. 8.88, 8.088, 88.8, 88.08, 8.008
  11. Write the following fractional numbers as decimal fractions:
    1. \(\frac{9}{10}\)
    2. \(\frac{11}{100}\)
    3. \(\frac{17}{1000}\)
    4. \(\frac{31}{10000}\)
    5. 3\(\frac{19}{100}\)
  12. Convert each of the following into a fraction in its simplest form:
    1. .9
    2. 0.6
    3. .08
    4. 0.15
    5. 0.48
    6. .053
    7. 0.125
    8. .224
    9. 0.23
    10. 0.357
    11. 5.4567
    12. 12.05
  13. Convert each of the following as a mixed fraction:
    1. 6.4
    2. 16.5
    3. 8.36
    4. 4.275
    5. 25.06
    6. 7.004
    7. 2.052
    8. 3.108
  14. Convert each of the following into a decimal:
    1. \(\frac{23}{10}\)
    2. \(\frac{167}{100}\)
    3. \(\frac{1589}{100}\)
    4. \(\frac{5413}{1000}\)
    5. \(\frac{21415}{1000}\)
    6. \(\frac{25}{4}\)
    7. \(3\frac{3}{5}\)
    8. \(1\frac{4}{25}\)
    9. \(\frac{37}{50}\)
    10. \(\frac{107}{250}\)
    11. \(\frac{3}{40}\)
    12. \(\frac{7}{8}\)
    13. 1\(\frac{1}{25}\)
    14. 7\(\frac{7}{8}\)
    15. 10\(\frac{1}{20}\)
Using decimals, express
    1. 8 kg 640 g in kilograms
    2. 9 kg 37 g in kilograms
    3. 540 g in kilograms
    1. 4 km 365 m in kilometres
    2. 5 km 87 m in kilometres
    3. 270 m in kilometres
    4. 35 m in kilometres
    1. ₹ 18 and 25 paise in rupees
    2. ₹ 9 and 8 paise in rupees
    3. 32 paise tn rupees
    4. 5 paise in rupees
  1. Add:
    1. 0.275 and 0.425
    2. 0.001, 2.9 and 0.0002
    3. 39.101, 0.064 and 47 1.98
    4. 11.146, 0.2567, 9.23865 and 256
    5. 9.6, 14.8, 37 and 5.9
    6. 23.7, 106.94, 68.9 and 29.5
    7. 72.8, 7.68, 16.23 and 0.7
    8. 18.6, 84.75. 8.345 and 9.7
    9. 8.236, 16.064, 63.8 and 27.53
    10. 28.9, 19.64, 123.697 and 0.354
    11. 4.37, 9.638, 17.007 and 6.8
    12. 14.5, 0.038, 118.573 and 6.84
Find
    1. Rs 3.45 + Rs 15.50 + Rs 3.05
    2. 7.25 m + 2.45 m + 12.75 m
    3. 35.280 l + 42.500 l + 8.700 l + 15 l
    4. 90.250 kg + 186.450 kg + 1001.750 kg + 98 kg
    1. 9.0005 − 7.462
    2. 10 − 0.0002
    3. Rs 5.50 − Rs 4.80
    4. 36.50 km − 10.85 km
    5. 13 m − 10.400 m
    6. 87.1251 − 16.250 1
    7. 400 kg − 1 50.650 kg
    8. 25 kg − 18.950 kg
  1. Subtract:
    1. 27.86 from 53.74
    2. 59.63 from 92.4
    3. 56.8 from 204
    4. 127.38 from 216.2
    5. 39.875 from 70.68
    6. 348.237 from 523.12
    7. 458.573 from 600
    8. 0.612 from 3.4
Multiply:
    1. 0.2 × 4
    2. 0.4 × 12
    3. 9.1 × 11
    4. 13.5 × 17
    5. 0.12 × 62
    6. 4.32 × 51
    7. 2.007 × 36
    8. 3.125 × 86
    9. 4.028 × 234
    1. 2.34 × 10
    2. 89.015 × 10
    3. 134.2 × 10
    4. 4.34 × 100
    5. 1.325 × 100
    6. 8.7 × 100
    1. 1.67895 × 1000
    2. 76.2583 × 10000
    3. 0.125 × 100000
    4. 19.35 × 10000
    5. 0.00045 × 100000
    6. 20.012 × 10000
    1. 0.1 × 0.2
    2. 0.5 × 10.5
    3. 1.3 × 0.4
    4. 0.01 × 0.6
    5. 3.3 × 3.3
    6. 7.5 × 5.7
    1. 0.235 × 0.48
    2. 0.427 × 0.235
    3. 2.4327 × 4.23
    4. 1.0003 × 0.53
    5. 0.009 × 2.12
    6. 3.00704 × 4.0205
    1. 1 × 5.4
    2. 732.001 × 1
    3. 51.8 × 0
    1. 0.2 × 0.2 × 0.2
    2. 0.4 × 7.6 × 0.55
    3. 0.407 × 4.36 × 0.06
    4. 1.01 × 4.1 × 0.001
    5. 0.52 × 0.07 × 4.3 × 0.02
    1. 3.9 ÷ 3
    2. 18.9 ÷ 9
    3. 25.5 ÷ 5
    4. 80.8 ÷ 8
    5. 1.4 ÷ 7
    6. 4.8 ÷ 8
    1. 60.72 ÷ 12
    2. 55.55 ÷ 11
    3. 128.48 ÷ 16
    4. 9.09 ÷ 15
    5. 0.175 ÷ 25
    6. 0.0455 ÷ 35
    1. 617.313 ÷ 15
    2. 527.34 ÷ 85
    3. 426.478 ÷ 16
    4. 0.07849782 ÷ 72
    5. 0.00463 ÷ 50
    6. 1.2 ÷ 25
    7. 0.0042 ÷ 125
    8. 773.682 ÷ 169
    9. 2078.61 ÷ 579
    10. 00.00019517 ÷ 673
    11. 2.4 ÷ 625
    12. 0.217 ÷ 1250
    13. 431.376 ÷ 8170
    14. 0.001007 ÷ 47500
    1. 14.23 ÷ 10
    2. 0.456 ÷ 10
    3. 237.56 ÷ 100
    4. 8.12 ÷ 100
    5. 0.623 ÷ 100
    6. 8123.5 ÷ 1000
    7. 425.67 ÷ 1000
    8. 0.76 ÷ 1000
    1. 7.1 ÷ 100
    2. 23.45 ÷ 1000
    3. 6.14 ÷ 10000
    4. 100.23 ÷ 10000
    5. 9.2 ÷ 10000
    6. 0.3 ÷ 100000
Divide :
    1. 36.48 by 20
    2. 458.5 by 50
    3. 374.96 80
    4. 12.04 by 400
    5. 545.1 by 600
    6. 21.07 by 7000
    1. 1.5 ÷ 0.3
    2. 6.4 ÷ 0.4
    3. 4.94 ÷ 0.7
    4. 1.296 ÷ 0.108
    5. 44.1 ÷ 2.1
    6. 2.52 ÷ 1.2
    7. 0.625 ÷ 0.025
    8. 31.5 ÷ 1.5
    9. 9.69 ÷ 1.9
    10. 0.00169 ÷ 1.3
    11. 2.05 ÷ 2.5
    12. 7.45 ÷ 0.32
    13. 108.997 ÷ 2.3
    1. 1 ÷ 0.5
    2. 16 ÷ 0.08
    3. 148 ÷ 0.074
    4. 210 ÷ 1.25
    5. 1032 ÷ 2.064
    6. 9894 ÷ 3.88
    1. 2 ÷ 5
    2. 3 ÷ 8
    3. 16 ÷ 64
    4. 56 ÷ 224
    5. 12 ÷ 8
    6. 1500 ÷ 6000
    1. 3 ÷ 0.8
    2. 11 ÷ 0.4
    3. 7 ÷ 1.25
  1. Simplify:
    1. 37.6 + 72.85 − 58.678 − 6.09
    2. 75.3 − 104.645 + 178.96 − 47.9
    3. 213.4 − 56.84 − 1 1.87 − 16.087
    4. 76.3 − 7.666 − 6.77
    5. 5 − 0.005 − 0.05 + 0.5

Join the Discussion

Show Comments

No comments

No comments yet.

Post a Comment

Popular Post

Number Mathematics - Class 6 to 8

1. प्राकृत संख्याएँ 6 अंकों की कुल कितनी संख्याएँ बना सकती है? और सबसे बड़ी तथा छोटी संख्या ज्ञात कीजिए। बिना पुनरावृत्ति किए, 4, 7, 5 और 0 अंकों का प्रयोग करके चार अंकों की सबसे बड़ी और छोटी संख्याएँ बनाइए। अंक 2, 0, 4, 7, 6 तथा 5 से केवल एक-एक बार प्रयोग कर बनने वाली छह अंकों की सबसे बड़ी तथा सबसे छोटी संख्याओं का योग ज्ञात कीजिए। आपके पास 4, 5, 6, 0, 7 और 8 के अंक हैं। इनका प्रयोग करते हुए 6 अंकों की पाँच संख्याएँ बनाइए। अंकों 4, 5, 6, 7, 8 और 9 का प्रयोग कर 8 अंकों की कोई तीन संख्याएँ बनाइए। पढ़ने में सरलता के लिए, अल्प विरामों का प्रयोग कीजिए। अंकों 3, 0 और 4 का प्रयोग कर 6 अंकों की पाँच संख्याएँ बनाइए। अल्प विरामों का भी प्रयोग कीजिए। 8 अंकों की सबसे छोटी संख्या से प्रारंभ करते हुए, आरोही क्रम में अगली पाँच संख्याएँ लिखिए और उन्हें पढिए। निम्नलिखित समूह में सबसे छोटी तथा बड़ी संख्याएँ ज्ञात कीजिए और फिर आरोही ...
By Mr. Guddu Kumar

Number Mathematics Worksheets - Junior

Exercise 1A Write the number between 3456 and 3466. Write the numeral for each of the following numbers: Nine thousand eighteen Fifty-four thousand seventy-three Three lakh two thousand five hundred six Twenty lakh ten thousand eight Six crore five lakh fifty-seven Two crore two lakh two thousand two hundred two Twelve crore twelve lakh twelve thousand twelve Fifteen crore fifty lakh twenty thousand sixty-eight Write each of the following numbers in words: 63,005 7,07,075 34,20,019 3,05,09,012 5,10,03,604 6,18,05,008 19,09,09,900 6,15,30,807 6,60,60,060 Write each of the following numbers in expanded form: 15,768 3,08,927 24,05,609 5,36,18,493 6,06,06,006 9,10,10,510 Writ...
By Mr. Guddu Kumar
Measurement Math - Junior

Measurement Math - Junior

Money Express the following amounts of money in words: 25 rupees 25 paise 8 rupees 50 paise 79 rupees 75 rupees Express the following amounts of money in figures: 20 rupees 75 paise 30 rupees 45 paise 80 rupees 95 paise Express the following amounts of money in words: Rs 20.30 ₹50.75 ₹79.05 Re 0.09 Rs 95.00 Converting the following into paise (p): Rs 2 Rs 9 ₹3 Rs 10 ₹4 Rs 15 ₹3.25 ₹5.10 Rs 1.05 converting the following into rupees and paise: 4020 paise 3080 paise 390 paise 10...
By Mr. Guddu Kumar

Indices and Surds Math - Class 6 to 8

1. प्राकृत संख्याएँ 6 अंकों की कुल कितनी संख्याएँ बना सकती है? और सबसे बड़ी तथा छोटी संख्या ज्ञात कीजिए। बिना पुनरावृत्ति किए, 4, 7, 5 और 0 अंकों का प्रयोग करके चार अंकों की सबसे बड़ी और छोटी संख्याएँ बनाइए। अंक 2, 0, 4, 7, 6 तथा 5 से केवल एक-एक बार प्रयोग कर बनने वाली छह अंकों की सबसे बड़ी तथा सबसे छोटी संख्याओं का योग ज्ञात कीजिए। आपके पास 4, 5, 6, 0, 7 और 8 के अंक हैं। इनका प्रयोग करते हुए 6 अंकों की पाँच संख्याएँ बनाइए। अंकों 4, 5, 6, 7, 8 और 9 का प्रयोग कर 8 अंकों की कोई तीन संख्याएँ बनाइए। पढ़ने में सरलता के लिए, अल्प विरामों का प्रयोग कीजिए। अंकों 3, 0 और 4 का प्रयोग कर 6 अंकों की पाँच संख्याएँ बनाइए। अल्प विरामों का भी प्रयोग कीजिए। 8 अंकों की सबसे छोटी संख्या से प्रारंभ करते हुए, आरोही क्रम में अगली पाँच संख्याएँ लिखिए और उन्हें पढिए। निम्नलिखित समूह में सबसे छोटी तथा बड़ी संख्याएँ ज्ञात कीजिए और फिर आरोही तथा अवरोही क्रम में व्यवस्थित कीजिए। 63521047, 63514759, 73550...
By Mr. Guddu Kumar

Commercial Math - Junior

Temperature Fill in the blanks. A thermometer is used for measuring the … of objects. The temperature of the body of a patient is measured with a … thermometer. Clinical thermometers are marked in … scale. Give the temperatures of the following in Fahrenheit scale as well as Celsius scale. Freezing point of water Boiling point of water Normal body temperature of human beings Convert the temperatures given below to Celsius scale: 122℉ 77℉ 41℉ 122.9℉ 176℉ Convert the temperatures given below to Fahrenheit scale: 110℃ 85℃ 25℃ 80.5℃ 50℃ Averages Find the average of the following: 10 and 16 70 g and 76 g ₹80 and ₹90 40.5 m and 60.3 m 34 l and 20 l 3 \(\frac{1}{2}\) and 6 \(\frac{1}{2}\) ...
By Mr. Guddu Kumar

Algebra Math - Junior

Algebraic Expression Write the following using literals, numbers and signs of basic operations. x increased by 12 y decreased by 7 The difference of a and b. when a > b 5 times x added to 7 times y Sum of x and the quotient of y by 5 x taken away from 4 2 less than the quotient of x by y x multiplied by itself Twice x increased by y Thrice x added to y squared x cubed less than y cubed Write the following in the exponential form: b × b × b × …15 times y × y × y × …20 times 14 × a × a × a × a × b × b × b 6 × x × x × y × y 3 × z × z × z × y × y × x Write down the following in the product form: x 2 y 4 ...
By Mr. Guddu Kumar
Mathematics Revision - Class 10

Mathematics Revision - Class 10

वास्तविक संख्याएँ एक परिमेय और एक अपरिमेय संख्या का योग या अंतर एक अपरिमेय संख्या होती है। एक शून्येतर परिमेय संख्या और एक अपरिमेय संख्या का गुणनफल या भागफल एक अपरिमेय संख्या होती है। मान लीजिए कि x = \(\frac{p}{q}\) एक परिमेय संख्या इस प्रकार है कि q का अभाज्य गुणनखंडन 2 m .5 n के रूप का नहीं है; जहाँ m, n ऋणेतर पूर्णांक हैं। तब, x का असांत आवर्ती दशमलव प्रसार होता है। बहुपद गुणनखंड प्रमेय के प्रयोग द्वारा बीजीय व्यंजकों के गुणनखंड बीजीय सर्वसमिकाएँ : बीजीय सर्वसमिकाएँ - (x + y) 2 = x 2 + 2xy + y 2 (x − y) 2 = x 2 − 2xy + y 2 x 2 − y 2 = (x + y)(x − y) (x + a)(x + b) = x 2 + (a + b)x + ab (x + y + z) 2 = x 2 + y 2 + z 2 + 2xy + 2yz + 2zx (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3 = x 3 + y 3 + 3xy(x + y) (x − y) 3 = x ...
By Mr. Guddu Kumar
Data Handling Math - Junior

Data Handling Math - Junior

Data Handling The sale of shoes of various sizes at a shop on a particular day is given below: 6, 9, 8, 5, 5, 4, 9, 8, 5, 6, 9, 9, 7, 8, 9, 7, 6, 9, 8, 6, 7, 5, 8, 9, 4, 5, 8, 7. Represent the above data in the form of a frequency distribution table. The number of two wheelers owned individually by each of 50 families are listed below. Make a table using tally marks: 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 0, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 2, 1, 1, 4, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 1, 1 The lengths in centimetres (to the nearest centimetre) of 30 carrots are given as follows: 15, 20,22, 22,21, 21, 20, 22, 15, 20, 15, 21, 21, 18, 18, 21, 20, 18, 20, 15, 20, 18, 20, 15, 21, 18, 20, 18, 22 Arrange the data given above in a table using tally marks and answer the following questions. What...
By Mr. Guddu Kumar