1. Fractional Numbers
-
Write the fraction representing the shaded portion:
-
-
Shade the figures to show the fractions written below them.
-
-
Write a fraction for each of the following:
- three-fourths
- four-sevenths
- two-fifths
- three-tenths
- one-eighth
- five-sixths
- eight-ninths
- seven-twelfths
-
Write down the fractional number for each of the following:
- \(\frac{2}{3}\)
- \(\frac{4}{9}\)
- \(\frac{2}{5}\)
- \(\frac{7}{10}\)
- \(\frac{1}{3}\)
- \(\frac{3}{4}\)
-
Write the numerators and the denominators of the following
fractional numbers:
- \(\frac{3}{5}\)
- \(\frac{4}{7}\)
- \(\frac{12}{17}\)
- \(\frac{23}{35}\)
- \(\frac{57}{61}\)
-
Write down the fraction in which
- Numerator = 5, Denominator = 12
- Numerator = 8, Denominator = 15
-
Represent each of the following fractions on the number line:
- \(\frac{3}{8}\)
- \(\frac{5}{9}\)
- \(\frac{4}{7}\)
- \(\frac{2}{5}\)
- \(\frac{1}{4}\)
-
Ring all the like fractions:
- \(\frac{1}{10}\), \(\frac{3}{10}\), \(\frac{7}{10}\), \(\frac{10}{7}\)
- \(\frac{19}{11}\), \(\frac{11}{19}\), \(\frac{15}{19}\), \(\frac{16}{19}\)
-
Which of the following are proper fractions, improper fractions and
mixed fractions?
\(\frac{1}{2}\), \(\frac{7}{4}\), 2, \(\frac{15}{8}\), \(\frac{16}{16}\), 3\(\frac{6}{17}\), \(\frac{23}{10}\), \(\frac{3}{2}\), \(\frac{5}{6}\), \(\frac{9}{4}\), \(\frac{8}{8}\), 3, \(\frac{27}{16}\), \(\frac{23}{31}\), \(\frac{10}{13}\), \(\frac{26}{26}\), 3\(\frac{1}{4}\), 1\(\frac{1}{2}\), \(\frac{4}{5}\), 7\(\frac{1}{4}\), \(\frac{12}{1}\), 9\(\frac{1}{3}\), \(\frac{12}{17}\), 21\(\frac{1}{12}\), 29\(\frac{3}{4}\) - Ring the unit fractions: \(\frac{7}{1}\), \(\frac{1}{2}\), \(\frac{1}{7}\), \(\frac{8}{1}\), \(\frac{8}{9}\), \(\frac{1}{9}\)
-
Write each of the following divisions as fractions:
- 3 ÷ 5
- 5 ÷ 3
- 7 ÷ 9
- 9 ÷ 1
-
Write each of the following fractions in the form of division:
- \(\frac{7}{9}\)
- \(\frac{8}{11}\)
- 2\(\frac{1}{4}\)
- \(\frac{8}{8}\)
- \(\frac{6}{1}\)
-
Express each of the following as a mixed fraction or a whole number:
- \(\frac{20}{3}\)
- \(\frac{11}{5}\)
- \(\frac{17}{7}\)
- \(\frac{28}{5}\)
- \(\frac{19}{6}\)
- \(\frac{35}{9}\)
-
Express the following as improper fractions :
- \(7\frac{3}{4}\)
- \(2\frac{5}{6}\)
- \(10\frac{3}{5}\)
- \(8\frac{4}{9}\)
- 1\(\frac{1}{2}\)
-
Write the integral part and the fractional part of the following
mixed frachons:
- 2\(\frac{3}{4}\)
- 4\(\frac{5}{7}\)
- 9\(\frac{1}{2}\)
- 10\(\frac{7}{8}\)
-
Fill in the blanks:
- \(\frac{2}{3}\) = \(\frac{\cdots}{12}\)
- \(\frac{3}{4}\) = \(\frac{9}{\cdots}\)
- \(\frac{4}{7}\) = \(\frac{20}{\cdots}\)
- \(\frac{29}{32}\) = \(\frac{\cdots}{64}\)
- \(\frac{\cdots}{5}\) = \(\frac{6}{15}\)
- \(\frac{1}{2}\) = \(\frac{\cdots}{4}\)
-
Fill in the blanks so that the fractions may be equivalent:
- \(\frac{2}{3}\) = \(\frac{2 \times 2}{3 \times \cdots}\) = \(\frac{2 \times \cdots}{3 \times 3}\) = \(\frac{2 \times 5}{3 \times \cdots}\) = \(\frac{2 \times \cdots}{3 \times 6}\)
- \(\frac{3}{5}\) = \(\frac{3 \times 2}{5 \times \cdots}\) = \(\frac{3 \times 3}{5 \times \cdots}\) = \(\frac{3 \times \cdots}{5 \times 4}\) = \(\frac{3 \times \cdots}{5 \times 5}\)
- \(\frac{5}{8}\) = \(\frac{5 \times 2}{8 \times \cdots}\) = \(\frac{5 \times 3}{8 \times \cdots}\) = \(\frac{5 \times \cdots}{8 \times 7}\) = \(\frac{5 \times \cdots}{8 \times 9}\)
- \(\frac{2}{7}\) = \(\frac{2 \times 6}{7 \times \cdots}\) = \(\frac{2 \times 8}{7 \times \cdots}\) = \(\frac{2 \times \cdots}{7 \times 9}\) = \(\frac{2 \times \cdots}{7 \times 10}\)
-
- Write two equivalent fractions of \(\frac{1}{4}\).
- Write three equivalent fractons of \(\frac{3}{4}\).
- Write four equivalent fractions of \(\frac{2}{5}\).
- Write five equivalent fractions of \(\frac{1}{2}\).
-
Change each of the following fractions to equivalent fractions
having the denominator 32:
- \(\frac{1}{2}\)
- \(\frac{1}{4}\)
- \(\frac{3}{8}\)
- \(\frac{5}{16}\)
-
Change each of the following fractions to equivalent fractions
having the numerator 48:
- \(\frac{2}{3}\)
- \(\frac{3}{4}\)
- \(\frac{4}{3}\)
- \(\frac{8}{19}\)
-
Are the following fractions equivalent? Write ‘Yes’ or ’No:
- \(\frac{1}{2}\) = \(\frac{5}{10}\)
- \(\frac{2}{4}\) = \(\frac{6}{7}\)
- \(\frac{3}{6}\) = \(\frac{12}{24}\)
- \(\frac{4}{9}\) = \(\frac{36}{81}\)
- \(\frac{3}{4}\) = \(\frac{3 + 4}{4 + 4}\)
- \(\frac{11}{17}\) = \(\frac{11 - 2}{17 - 2}\)
-
Write ‘True’ or ‘False’:
- \(\frac{4}{7}\) = \(\frac{12}{21}\)
- \(\frac{3}{5}\) = \(\frac{21}{35}\)
- \(\frac{4}{7}\) = \(\frac{24}{42}\)
- \(\frac{4}{9}\) = \(\frac{9}{14}\)
-
- Express 6 as a fracton with 5 as the denominator.
- Express 3 as a fraction with 8 as the denominator.
-
Change the following fractions to like fractions:
- \(\frac{1}{6}\), \(\frac{1}{9}\)
- \(\frac{3}{4}\), \(\frac{5}{12}\)
- \(\frac{7}{12}\), \(\frac{8}{15}\)
- \(\frac{7}{16}\), \(\frac{11}{24}\)
- \(\frac{2}{5}\), \(\frac{3}{10}\), \(\frac{4}{15}\)
- \(\frac{1}{8}\), \(\frac{5}{16}\), \(\frac{9}{32}\)
-
- \(\frac{9}{10}\) □ \(\frac{7}{10}\)
- \(\frac{3}{7}\) □ \(\frac{6}{7}\)
- \(\frac{6}{11}\) □ \(\frac{5}{11}\)
-
- \(\frac{7}{8}\) □ \(\frac{7}{10}\)
- \(\frac{4}{11}\) □ \(\frac{4}{9}\)
- \(\frac{11}{14}\) □ \(\frac{11}{15}\)
-
- \(\frac{2}{3}\) □ \(\frac{3}{4}\)
- \(\frac{1}{2}\) □ \(\frac{1}{3}\)
- \(\frac{2}{5}\) □ \(\frac{6}{11}\)
- \(\frac{7}{12}\) □ \(\frac{2}{5}\)
- \(\frac{3}{7}\) □ \(\frac{4}{5}\)
- \(\frac{5}{16}\) □ \(\frac{4}{17}\)
-
- 2\(\frac{1}{2}\) □ \(\frac{3}{2}\)
- \(\frac{4}{3}\) □ 4\(\frac{1}{3}\)
- 3\(\frac{2}{3}\) □ \(\frac{11}{3}\)
-
- \(\frac{5}{11}\), \(\frac{9}{11}\), \(\frac{7}{11}\), \(\frac{4}{11}\)
- \(\frac{11}{12}\), \(\frac{5}{12}\), \(\frac{7}{12}\), \(\frac{1}{12}\)
-
- \(\frac{15}{17}\), \(\frac{15}{19}\), \(\frac{15}{18}\), \(\frac{15}{31}\)
- \(\frac{31}{37}\), \(\frac{31}{49}\), \(\frac{31}{36}\), \(\frac{31}{45}\)
-
- \(\frac{1}{4}\), \(\frac{3}{4}\), \(\frac{1}{6}\), \(\frac{7}{10}\)
- \(\frac{1}{5}\), \(\frac{2}{15}\), \(\frac{3}{10}\), \(\frac{7}{20}\)
- \(\frac{2}{3}\), \(\frac{4}{9}\), \(\frac{5}{12}\), \(\frac{5}{6}\)
- \(\frac{2}{7}\), \(\frac{3}{14}\), \(\frac{5}{28}\), \(\frac{4}{21}\)
-
Find out if the following fractions are in the lowest terms:
- \(\frac{6}{9}\)
- \(\frac{4}{15}\)
- \(\frac{14}{21}\)
- \(\frac{72}{77}\)
- \(\frac{51}{85}\)
- \(\frac{88}{91}\)
-
Which of the following fractions are not in the lowest terms?
- \(\frac{6}{9}\)
- \(\frac{7}{9}\)
- \(\frac{10}{70}\)
- \(\frac{85}{91}\)
- \(\frac{88}{117}\)
- \(\frac{108}{135}\)
-
Reduce to the lowest terms:
- \(\frac{2}{4}\)
- \(\frac{4}{8}\)
- \(\frac{5}{10}\)
- \(\frac{6}{8}\)
- \(\frac{2}{10}\)
- \(\frac{3}{12}\)
- \(\frac{4}{12}\)
- \(\frac{8}{12}\)
- \(\frac{2}{12}\)
- \(\frac{7}{14}\)
- \(\frac{9}{15}\)
- \(\frac{4}{16}\)
- \(\frac{8}{20}\)
- \(\frac{9}{24}\)
- \(\frac{16}{12}\)
- \(\frac{54}{12}\)
- \(\frac{24}{20}\)
- \(\frac{56}{40}\)
-
Add together:
- \(\frac{5}{17}\), \(\frac{2}{17}\)
- \(\frac{1}{12}\), \(\frac{4}{12}\)
- \(\frac{4}{19}\), \(\frac{15}{19}\)
- \(\frac{7}{22}\), \(\frac{25}{22}\)
-
- \(\frac{2}{5}\) + \(\frac{1}{5}\)
- \(\frac{4}{10}\) + \(\frac{3}{10}\)
- \(\frac{5}{17}\) + \(\frac{2}{17}\)
- \(\frac{4}{18}\) + \(\frac{3}{18}\)
- \(\frac{2}{13}\) + \(\frac{4}{13}\)
- \(\frac{4}{19}\) + \(\frac{15}{19}\)
-
- \(\frac{4}{19}\) + \(\frac{7}{19}\) + \(\frac{9}{19}\)
- \(\frac{5}{12}\) + \(\frac{7}{12}\) + \(\frac{1}{12}\)
- \(\frac{15}{8}\) + \(\frac{7}{8}\) + \(\frac{1}{8}\)
- \(\frac{13}{10}\) + \(\frac{3}{10}\) + \(\frac{19}{10}\)
-
- \(\frac{3}{4}\) + \(\frac{5}{8}\)
- \(\frac{2}{5}\) + \(\frac{4}{15}\)
- \(\frac{2}{5}\) + \(\frac{1}{4}\)
- \(\frac{3}{7}\) + \(\frac{2}{3}\)
- \(\frac{2}{3}\) + \(\frac{4}{21}\)
- \(\frac{3}{10}\) + \(\frac{7}{20}\)
- \(\frac{3}{8}\) + \(\frac{25}{24}\)
- \(\frac{4}{15}\) + \(\frac{7}{30}\)
- \(\frac{3}{16}\) + \(\frac{35}{32}\)
-
- \(\frac{1}{2}\) + \(\frac{3}{4}\) + \(\frac{5}{8}\)
- \(\frac{3}{4}\) + \(\frac{5}{6}\) + \(\frac{7}{12}\)
- \(\frac{2}{5}\) + \(\frac{13}{10}\) + \(\frac{7}{15}\)
- \(\frac{3}{5}\) + \(\frac{7}{10}\) + \(\frac{31}{20}\)
- \(\frac{1}{2}\) + \(\frac{5}{6}\) + \(\frac{27}{12}\)
- \(\frac{2}{13}\) + \(\frac{1}{26}\) + \(\frac{4}{39}\)
- \(\frac{1}{2}\) + \(\frac{3}{4}\) + \(\frac{5}{8}\) + \(\frac{7}{16}\)
- \(\frac{2}{3}\) + \(\frac{3}{5}\) + \(\frac{1}{15}\) + \(\frac{4}{5}\)
- \(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) + \(\frac{1}{5}\)
- \(\frac{5}{12}\) + \(\frac{2}{3}\) + \(\frac{3}{4}\) + \(\frac{5}{6}\)
-
- 5 + \(\frac{3}{11}\)
- 4 + \(\frac{6}{13}\)
- 7 + \(\frac{11}{4}\)
- \(\frac{11}{15}\) + 0
-
- 5\(\frac{2}{9}\) + 2\(\frac{4}{9}\)
- 2\(\frac{1}{2}\) + 3\(\frac{1}{2}\) + 4\(\frac{1}{4}\)
- 2\(\frac{1}{6}\) + 3\(\frac{5}{6}\) + 10\(\frac{1}{6}\)
- 3\(\frac{1}{13}\) + 1\(\frac{4}{13}\) + 2\(\frac{3}{13}\)
-
- 2\(\frac{1}{2}\) + 1\(\frac{2}{3}\)
- 3\(\frac{1}{3}\) + 2\(\frac{2}{9}\)
- 4\(\frac{3}{4}\) + 3\(\frac{1}{8}\)
- 6\(\frac{3}{8}\) + 10\(\frac{1}{16}\)
- 3\(\frac{5}{8}\) + 2\(\frac{7}{12}\)
- 2\(\frac{2}{15}\) + 1\(\frac{9}{20}\)
-
- 2\(\frac{5}{8}\) + 2\(\frac{3}{4}\) + 2\(\frac{1}{2}\)
- 3\(\frac{3}{4}\) + 5\(\frac{1}{8}\) + 1\(\frac{3}{16}\)
- 3\(\frac{1}{3}\) + 4\(\frac{5}{9}\) + 2\(\frac{5}{6}\)
- 4\(\frac{2}{7}\) + 1\(\frac{10}{21}\) + 5\(\frac{2}{3}\)
- 1\(\frac{5}{8}\) + 2\(\frac{7}{12}\) + 3\(\frac{3}{4}\)
- 2\(\frac{1}{16}\) + 3\(\frac{5}{12}\) + 4\(\frac{1}{4}\)
-
- \(\frac{11}{8}\) + 2\(\frac{3}{16}\)
- 1\(\frac{3}{10}\) + \(\frac{7}{10}\)
- 2 + \(\frac{6}{21}\) + 3\(\frac{4}{7}\)
- 4\(\frac{3}{4}\) + 3 + 3\(\frac{1}{12}\)
-
- \(\frac{7}{9}\) − \(\frac{4}{9}\)
- \(\frac{7}{12}\) − \(\frac{6}{12}\)
- \(\frac{25}{36}\) − \(\frac{11}{36}\)
- \(\frac{20}{51}\) − \(\frac{16}{51}\)
- \(\frac{79}{89}\) − \(\frac{47}{89}\)
- \(\frac{15}{92}\) − \(\frac{13}{92}\)
-
- \(\frac{3}{8}\) − \(\frac{1}{4}\)
- \(\frac{23}{40}\) − \(\frac{1}{8}\)
- \(\frac{11}{12}\) − \(\frac{5}{16}\)
- \(\frac{7}{16}\) − \(\frac{5}{24}\)
- \(\frac{8}{15}\) − \(\frac{3}{20}\)
- \(\frac{7}{24}\) − \(\frac{5}{36}\)
-
- 12\(\frac{3}{4}\) − \(\frac{1}{2}\)
- 7\(\frac{7}{9}\) − \(\frac{1}{3}\)
- 4\(\frac{3}{7}\) − \(\frac{1}{14}\)
-
- 6\(\frac{3}{4}\) − 4\(\frac{1}{4}\)
- 7\(\frac{8}{9}\) − 5\(\frac{2}{3}\)
- 8\(\frac{9}{10}\) − 3\(\frac{3}{5}\)
- 3\(\frac{2}{16}\) − 1\(\frac{3}{8}\)
- 4\(\frac{5}{18}\) − 2\(\frac{4}{9}\)
- 5\(\frac{3}{8}\) − 1\(\frac{1}{24}\)
-
- 3 − \(\frac{2}{11}\)
- 6 − \(\frac{5}{12}\)
- 8 − 3\(\frac{2}{5}\)
-
- \(\frac{3}{10}\) − 0
- \(\frac{15}{8}\) − 0
- 2\(\frac{1}{3}\) − 0
- \(\frac{2}{9}\) − \(\frac{2}{9}\)
- \(\frac{10}{3}\) − \(\frac{10}{3}\)
- 3\(\frac{4}{9}\) − 3\(\frac{4}{9}\)
-
Use repeated addition to find the following:
- 3 × \(\frac{1}{4}\)
- 6 × \(\frac{3}{5}\)
- 2 × \(\frac{4}{7}\)
- 4 × \(\frac{2}{3}\)
-
- \(\frac{7}{2}\) of 6
- \(\frac{5}{12}\) of 60
- \(\frac{8}{3}\) of 9
- \(\frac{2}{15}\) of 75
-
- \(\frac{5}{11}\) of ₹ 220
- \(\frac{4}{9}\) of 54 metres
- \(\frac{6}{7}\) of 35 litres
- \(\frac{1}{6}\) of an hour
- \(\frac{5}{6}\) of an year
- \(\frac{7}{20}\) of a kg
- \(\frac{9}{20}\) of a metre
- \(\frac{7}{8}\) of a day
- \(\frac{3}{7}\) of a week
- \(\frac{7}{50}\) of a litre
-
- How much is 4 times \(\frac{1}{8}\)?
- How much is 5 times \(\frac{3}{20}\)?
-
- 7 × \(\frac{2}{11}\)
- 8 × \(\frac{7}{9}\)
- 9 × \(\frac{4}{11}\)
- \(\frac{5}{12}\) × 11
- \(\frac{17}{11}\) × 12
- \(\frac{1}{13}\) × 28
-
- 3\(\frac{1}{4}\) × 5
- 4\(\frac{1}{3}\) × 7
- 9\(\frac{1}{2}\) × 3
- 2\(\frac{1}{3}\) × 8
- 3\(\frac{1}{2}\) × 9
- 4\(\frac{1}{2}\) × 7
- 10 × 6\(\frac{1}{3}\)
- 11 × 2\(\frac{1}{3}\)
- 17 × 1\(\frac{1}{2}\)
-
- \(\frac{2}{3}\) × \(\frac{2}{7}\)
- \(\frac{4}{7}\) × \(\frac{2}{5}\)
- \(\frac{6}{13}\) × \(\frac{2}{5}\)
- \(\frac{7}{15}\) × \(\frac{5}{8}\)
- \(\frac{9}{16}\) × \(\frac{4}{9}\)
- \(\frac{8}{13}\) × \(\frac{7}{12}\)
-
- 1\(\frac{1}{2}\) × \(\frac{5}{7}\)
- 1\(\frac{1}{3}\) × \(\frac{7}{8}\)
- 2\(\frac{1}{2}\) × \(\frac{3}{8}\)
- \(\frac{9}{11}\) × 2\(\frac{1}{4}\)
- \(\frac{6}{13}\) × 3\(\frac{2}{5}\)
- \(\frac{4}{7}\) × 5\(\frac{1}{3}\)
-
- 4\(\frac{1}{4}\) × 1\(\frac{1}{3}\)
- 9\(\frac{1}{12}\) × 2\(\frac{2}{5}\)
- 5\(\frac{1}{3}\) × 5\(\frac{1}{4}\)
-
- 2\(\frac{2}{3}\) × \(\frac{5}{12}\)
- 1\(\frac{3}{4}\) × \(\frac{8}{15}\)
- \(\frac{12}{25}\) × 6\(\frac{2}{3}\)
- 20 × 3\(\frac{1}{5}\)
- 1\(\frac{1}{4}\) × 2\(\frac{2}{5}\)
- 3\(\frac{3}{8}\) × 5\(\frac{1}{9}\)
- 5\(\frac{1}{7}\) × 5\(\frac{1}{9}\)
- 8\(\frac{1}{8}\) × 28
-
- 5 times 1\(\frac{4}{15}\)
- 12 times 2\(\frac{5}{24}\)
-
Fill in the blanks:
- \(\frac{1}{4}\) of a rupee = □ paise
- \(\frac{3}{8}\) of two rupees = □ paise
- \(\frac{3}{5}\) of fifty rupees = □ rupees
- \(\frac{7}{10}\) of four rupees = □ paise
-
Fill in the blanks:
- \(\frac{2}{5}\) of a kg = □ g
- \(\frac{1}{100}\) of 30 kg = □ g
-
Write the reciprocals (multiplicative inverses) of the following:
- \(\frac{1}{2}\)
- \(\frac{1}{3}\)
- \(\frac{1}{4}\)
- 7
- 11
- 45
- \(\frac{4}{5}\)
- \(\frac{6}{7}\)
- \(\frac{9}{11}\)
- 1\(\frac{4}{5}\)
- 2\(\frac{3}{7}\)
- 3\(\frac{4}{5}\)
-
- 3 by 1\(\frac{1}{2}\)
- 5 by 2\(\frac{1}{2}\)
- 4 by 3\(\frac{1}{3}\)
- 1\(\frac{1}{2}\) by 3
- 2\(\frac{1}{2}\) by 5
- 4\(\frac{2}{3}\) by 6
- \(\frac{2}{7}\) by 5
- \(\frac{12}{7}\) by 14
- 15 by \(\frac{3}{10}\)
- \(\frac{4}{7}\) by \(\frac{2}{3}\)
- \(\frac{3}{11}\) by \(\frac{2}{7}\)
- \(\frac{7}{6}\) by \(\frac{2}{21}\)
- \(\frac{3}{4}\) by 3
- \(\frac{8}{5}\) by 4
- \(\frac{14}{25}\) by 7
- \(\frac{1}{2}\) by 3
- \(\frac{3}{16}\) by 3
- \(\frac{14}{15}\) by 7
- \(\frac{1}{6}\) by \(\frac{1}{3}\)
- \(\frac{2}{15}\) by \(\frac{1}{15}\)
- \(\frac{1}{5}\) by \(\frac{2}{25}\)
- \(\frac{7}{9}\) by \(\frac{28}{45}\)
- \(\frac{11}{12}\) by \(\frac{33}{24}\)
- \(\frac{15}{16}\) by \(\frac{75}{128}\)
-
- 1\(\frac{1}{2}\) ÷ 3
- 1\(\frac{1}{3}\) ÷ 4
- 2\(\frac{1}{5}\) ÷ 11
- 3\(\frac{2}{7}\) ÷ 92
- 63 ÷ 2\(\frac{1}{4}\)
- 72 ÷ 9\(\frac{1}{7}\)
-
- \(\frac{1}{2}\) ÷ 2
- \(\frac{1}{4}\) ÷ 2
- \(\frac{1}{2}\) ÷ 4
- \(\frac{1}{3}\) ÷ 3
- \(\frac{1}{5}\) ÷ 4
- \(\frac{1}{6}\) ÷ 5
-
- 2\(\frac{1}{3}\) ÷ 7
- 3\(\frac{1}{4}\) ÷ 26
- 5\(\frac{1}{4}\) ÷ 42
- 7\(\frac{2}{3}\) ÷ 46
- 11\(\frac{2}{5}\) ÷ 57
- 12\(\frac{3}{4}\) ÷ 102
-
- 4 ÷ \(\frac{4}{5}\)
- 13 ÷ \(\frac{1}{6}\)
- 15 ÷ \(\frac{1}{8}\)
-
- 16 ÷ \(\frac{8}{3}\)
- 21 ÷ 3\(\frac{1}{2}\)
- 25 ÷ 7\(\frac{1}{2}\)
- 35 ÷ 3\(\frac{3}{4}\)
- 67 ÷ 9\(\frac{4}{7}\)
- 99 ÷ 2\(\frac{5}{47}\)
-
- \(\frac{12}{49}\) ÷ \(\frac{3}{7}\)
- \(\frac{25}{39}\) ÷ \(\frac{10}{13}\)
- \(\frac{16}{63}\) ÷ \(\frac{4}{27}\)
- \(\frac{4}{7}\) ÷ \(\frac{2}{21}\)
- \(\frac{5}{48}\) ÷ \(\frac{5}{24}\)
- \(\frac{3}{28}\) ÷ \(\frac{5}{14}\)
-
- 1\(\frac{1}{4}\) ÷ \(\frac{5}{8}\)
- \(\frac{12}{49}\) ÷ \(\frac{11}{15}\)
- \(\frac{12}{49}\) ÷ \(\frac{27}{50}\)
- 1\(\frac{2}{3}\) ÷ 6\(\frac{1}{4}\)
- 3\(\frac{3}{10}\) ÷ 5\(\frac{1}{2}\)
- 10\(\frac{1}{2}\) ÷ 4\(\frac{2}{3}\)
-
- 3\(\frac{1}{4}\) ÷ \(\frac{1}{8}\)
- 5\(\frac{2}{3}\) ÷ \(\frac{1}{6}\)
- 16\(\frac{3}{5}\) ÷ \(\frac{1}{25}\)
- \(\frac{1}{5}\) ÷ 1\(\frac{1}{10}\)
- \(\frac{2}{7}\) ÷ 2\(\frac{3}{14}\)
- \(\frac{3}{8}\) ÷ 2\(\frac{3}{16}\)
- 6\(\frac{2}{3}\) ÷ 2\(\frac{2}{9}\)
- 11\(\frac{2}{5}\) ÷ 3\(\frac{3}{4}\)
- 6\(\frac{2}{3}\) ÷ 13\(\frac{1}{3}\)
-
- \(\frac{11}{12}\) − \(\frac{5}{12}\) + \(\frac{1}{12}\)
- \(\frac{10}{13}\) + \(\frac{5}{13}\) − \(\frac{3}{13}\)
- \(\frac{16}{23}\) − \(\frac{3}{23}\) − \(\frac{11}{23}\)
- \(\frac{21}{25}\) − \(\frac{7}{25}\) + \(\frac{11}{25}\)
-
- \(\frac{8}{9}\) + \(\frac{1}{9}\) − \(\frac{7}{9}\) + \(\frac{4}{9}\)
- \(\frac{8}{17}\) + \(\frac{3}{17}\) + \(\frac{1}{17}\) − \(\frac{11}{17}\)
-
- \(\frac{7}{8}\) − \(\frac{3}{4}\) + \(\frac{1}{2}\)
- \(\frac{5}{12}\) + \(\frac{5}{8}\) − \(\frac{5}{16}\)
- 3 − \(\frac{11}{12}\) + \(\frac{5}{8}\)
- 11 + \(\frac{7}{9}\) − \(\frac{5}{6}\)
-
- 3\(\frac{6}{7}\) − 1\(\frac{2}{3}\) − \(\frac{20}{21}\)
- 1\(\frac{1}{15}\) − 2\(\frac{3}{5}\) + 5\(\frac{7}{10}\)
- 4 + 1\(\frac{5}{6}\) − 2\(\frac{3}{8}\)
- 5 − 2\(\frac{1}{7}\) − 1\(\frac{3}{5}\)
-
- \(\frac{42}{65}\) × \(\frac{39}{59}\) × \(\frac{24}{27}\)
- 6\(\frac{7}{8}\) × 6\(\frac{2}{11}\) × \(\frac{3}{10}\)
- 2\(\frac{1}{9}\) × \(\frac{5}{38}\) × 2\(\frac{1}{5}\)
- 4\(\frac{5}{8}\) × \(\frac{27}{35}\) × 7 × 1\(\frac{3}{37}\)
- \(\frac{5}{21}\) × \(\frac{7}{15}\) × 2\(\frac{1}{4}\) × \(\frac{12}{35}\) × 23\(\frac{1}{3}\)
-
- \(\frac{4}{5}\) ÷ \(\frac{7}{15}\) of \(\frac{8}{9}\)
- \(\frac{4}{5}\) ÷ \(\frac{7}{15}\) × \(\frac{8}{9}\)
- 5\(\frac{1}{4}\) ÷ \(\frac{3}{7}\) × \(\frac{1}{2}\)
- 5\(\frac{1}{4}\) ÷ \(\frac{3}{7}\) of \(\frac{1}{2}\)
- \(\frac{7}{8}\) + 2\(\frac{5}{6}\) − \(\frac{11}{12}\) × 3\(\frac{3}{11}\)
- 3\(\frac{3}{4}\) ÷ \(\frac{7}{8}\) × 4\(\frac{1}{6}\) × 1\(\frac{13}{15}\)
- \(\frac{1}{2}\) + 1\(\frac{1}{2}\) ÷ 1\(\frac{1}{2}\) × \(\frac{2}{3}\) − \(\frac{1}{4}\)
- 1\(\frac{4}{5}\) − 2\(\frac{3}{4}\) of \(\frac{8}{11}\) + \(\frac{3}{8}\) ÷ \(\frac{9}{10}\)
- 9\(\frac{1}{3}\) ÷ \(\frac{3}{5}\) of \(\frac{7}{9}\) × \(\frac{4}{5}\)
- \(\frac{3}{5}\) of 1\(\frac{3}{7}\) ÷ \(\frac{2}{5}\) − \(\frac{1}{2}\) + \(\frac{2}{3}\) × \(\frac{6}{7}\)
- 7\(\frac{1}{3}\) ÷ 3\(\frac{2}{3}\) of 2 + 4\(\frac{1}{2}\) ÷ 2\(\frac{1}{4}\) − 2\(\frac{1}{2}\)
- 25 of \(\frac{3}{5}\) ÷ 1\(\frac{2}{3}\) + 3 of \(\frac{1}{3}\) ÷ 10
-
- \(\Big(\frac{4}{9} + \frac{7}{9}\Big) \times 2\frac{1}{4}\)
- \(\frac{3}{8} \div \Big(1\frac{7}{8} - \frac{3}{4}\Big)\)
- \(6 + \Big\lbrace 1 + \frac{1}{2} + \Big(\frac{3}{4} - \frac{1}{2}\Big)\Big\rbrace\)
- \(\Big\lbrace \Big(13\frac{1}{3} - 12\frac{1}{2}\Big) \div \frac{5}{6} \Big\rbrace \text{ of } \frac{3}{8}\)
- \(2\frac{1}{2} - \Big\lbrace \frac{13}{4} - \Big(3\frac{1}{2} - 1\frac{3}{4}\Big)\Big\rbrace\)
- 140 - [4 + {12 × (7 − 5)}]
- \(4\frac{1}{2} - \Big[1 + \Big\lbrace 2\frac{1}{2} - \Big(\frac{1}{3} - \frac{1}{4}\Big)\Big\rbrace\Big]\)
- \(3\frac{1}{12} - \Big[1\frac{3}{4} + \Big\lbrace 2\frac{1}{2} - \Big(1\frac{1}{2} - \frac{1}{3}\Big)\Big\rbrace\Big]\)
- \(3\frac{1}{3} \text{ of } \frac{1}{2} + 2 \div \Big[2 \times \Big\lbrace 2 - \Big( 2 - \frac{1}{5} \Big) \Big\rbrace\Big]\)
- \(5\frac{1}{2} - \Big[2\frac{1}{3} \div \Big\lbrace \frac{3}{4} - \frac{1}{2} \times \Big(\frac{2}{3} - \frac{1}{24}\Big)\Big\rbrace\Big]\)
- \(\Big[2 + 5 \times \Big\lbrace 1\frac{1}{2} + \Big(\frac{3}{4} - \frac{1}{10}\Big)\Big\rbrace\Big] + 1\frac{1}{2}\)
2. Decimals
-
Write each of the following in figures:
- Fifty-eight point six three
- One hundred twenty-four point four two five
- Seven point seven six
- Nineteen point eight
- Four hundred four point zero four four
- Point one seven three
- Point zero one five
-
Read each of the following decimal fractions:
- 2.3
- 15.67
- 278.789
- 1234.5678
-
Write the integral parts of the following decimal fractions:
- 7.1
- 12.651
- 167.4
- 2345.678
-
Write the fractional parts of the following decimal fractions:
- 6.5
- 27.34
- 175.678
- 2929.38387
-
Write the place value of each digit in each of the following
decimals:
- 275.269
- 46.075
- 5370.34
- 186.209
-
Write each of the following decimals in expanded form:
- 24.675
- 0.294
- 8.006
- 4615.72
-
Write each of the following in decimal form:
- 40 + 6 + \(\frac{7}{10}\) + \(\frac{9}{100}\)
- 600 + 5 + \(\frac{7}{10}\) + \(\frac{9}{100}\)
- 800 + 5 + \(\frac{8}{10}\) + \(\frac{6}{100}\)
- 30 + 9 + \(\frac{4}{10}\) + \(\frac{8}{100}\)
- 700 + 30 + 1 + \(\frac{8}{10}\) + \(\frac{4}{100}\)
- 500 + 70 + 8 + \(\frac{3}{10}\) + \(\frac{1}{100}\) + \(\frac{6}{1000}\)
-
Fill in the blanks with >,< or =.
- 0.1 □ 0.01
- 2.32 □ 1.99
- 16.123 □ 16.12300
- 252.9111 □ 252.099
- 13.99 □ 14
- 8.431 □ 8.413
-
Arrange the following decimals in ascending order:
- 5.8. 7.2. 5.69. 7.14, 5.06
- 0.6, 6.6, 6.06, 66.6, 0.06
- 6.54. 6.45, 6.4, 6.5, 6.05
- 3.3, 3.303, 3.033, 0.33, 3.003
-
Arrange the following decimals in descending order:
- 7.3. 8.73. 73.03. 7.33. 8.073
- 3.3, 3.03, 30.3, 30.03, 3.003
- 2.7. 7.2. 2.27. 2.72, 2.02, 2.007
- 8.88, 8.088, 88.8, 88.08, 8.008
-
Write the following fractional numbers as decimal fractions:
- \(\frac{9}{10}\)
- \(\frac{11}{100}\)
- \(\frac{17}{1000}\)
- \(\frac{31}{10000}\)
- 3\(\frac{19}{100}\)
-
Convert each of the following into a fraction in its simplest form:
- .9
- 0.6
- .08
- 0.15
- 0.48
- .053
- 0.125
- .224
- 0.23
- 0.357
- 5.4567
- 12.05
-
Convert each of the following as a mixed fraction:
- 6.4
- 16.5
- 8.36
- 4.275
- 25.06
- 7.004
- 2.052
- 3.108
-
Convert each of the following into a decimal:
- \(\frac{23}{10}\)
- \(\frac{167}{100}\)
- \(\frac{1589}{100}\)
- \(\frac{5413}{1000}\)
- \(\frac{21415}{1000}\)
- \(\frac{25}{4}\)
- \(3\frac{3}{5}\)
- \(1\frac{4}{25}\)
- \(\frac{37}{50}\)
- \(\frac{107}{250}\)
- \(\frac{3}{40}\)
- \(\frac{7}{8}\)
- 1\(\frac{1}{25}\)
- 7\(\frac{7}{8}\)
- 10\(\frac{1}{20}\)
-
- 8 kg 640 g in kilograms
- 9 kg 37 g in kilograms
- 540 g in kilograms
-
- 4 km 365 m in kilometres
- 5 km 87 m in kilometres
- 270 m in kilometres
- 35 m in kilometres
-
- ₹ 18 and 25 paise in rupees
- ₹ 9 and 8 paise in rupees
- 32 paise tn rupees
- 5 paise in rupees
-
Add:
- 0.275 and 0.425
- 0.001, 2.9 and 0.0002
- 39.101, 0.064 and 47 1.98
- 11.146, 0.2567, 9.23865 and 256
- 9.6, 14.8, 37 and 5.9
- 23.7, 106.94, 68.9 and 29.5
- 72.8, 7.68, 16.23 and 0.7
- 18.6, 84.75. 8.345 and 9.7
- 8.236, 16.064, 63.8 and 27.53
- 28.9, 19.64, 123.697 and 0.354
- 4.37, 9.638, 17.007 and 6.8
- 14.5, 0.038, 118.573 and 6.84
-
- Rs 3.45 + Rs 15.50 + Rs 3.05
- 7.25 m + 2.45 m + 12.75 m
- 35.280 l + 42.500 l + 8.700 l + 15 l
- 90.250 kg + 186.450 kg + 1001.750 kg + 98 kg
-
- 9.0005 − 7.462
- 10 − 0.0002
- Rs 5.50 − Rs 4.80
- 36.50 km − 10.85 km
- 13 m − 10.400 m
- 87.1251 − 16.250 1
- 400 kg − 1 50.650 kg
- 25 kg − 18.950 kg
-
Subtract:
- 27.86 from 53.74
- 59.63 from 92.4
- 56.8 from 204
- 127.38 from 216.2
- 39.875 from 70.68
- 348.237 from 523.12
- 458.573 from 600
- 0.612 from 3.4
-
- 0.2 × 4
- 0.4 × 12
- 9.1 × 11
- 13.5 × 17
- 0.12 × 62
- 4.32 × 51
- 2.007 × 36
- 3.125 × 86
- 4.028 × 234
-
- 2.34 × 10
- 89.015 × 10
- 134.2 × 10
- 4.34 × 100
- 1.325 × 100
- 8.7 × 100
-
- 1.67895 × 1000
- 76.2583 × 10000
- 0.125 × 100000
- 19.35 × 10000
- 0.00045 × 100000
- 20.012 × 10000
-
- 0.1 × 0.2
- 0.5 × 10.5
- 1.3 × 0.4
- 0.01 × 0.6
- 3.3 × 3.3
- 7.5 × 5.7
-
- 0.235 × 0.48
- 0.427 × 0.235
- 2.4327 × 4.23
- 1.0003 × 0.53
- 0.009 × 2.12
- 3.00704 × 4.0205
-
- 1 × 5.4
- 732.001 × 1
- 51.8 × 0
-
- 0.2 × 0.2 × 0.2
- 0.4 × 7.6 × 0.55
- 0.407 × 4.36 × 0.06
- 1.01 × 4.1 × 0.001
- 0.52 × 0.07 × 4.3 × 0.02
-
- 3.9 ÷ 3
- 18.9 ÷ 9
- 25.5 ÷ 5
- 80.8 ÷ 8
- 1.4 ÷ 7
- 4.8 ÷ 8
-
- 60.72 ÷ 12
- 55.55 ÷ 11
- 128.48 ÷ 16
- 9.09 ÷ 15
- 0.175 ÷ 25
- 0.0455 ÷ 35
-
- 617.313 ÷ 15
- 527.34 ÷ 85
- 426.478 ÷ 16
- 0.07849782 ÷ 72
- 0.00463 ÷ 50
- 1.2 ÷ 25
- 0.0042 ÷ 125
- 773.682 ÷ 169
- 2078.61 ÷ 579
- 00.00019517 ÷ 673
- 2.4 ÷ 625
- 0.217 ÷ 1250
- 431.376 ÷ 8170
- 0.001007 ÷ 47500
-
- 14.23 ÷ 10
- 0.456 ÷ 10
- 237.56 ÷ 100
- 8.12 ÷ 100
- 0.623 ÷ 100
- 8123.5 ÷ 1000
- 425.67 ÷ 1000
- 0.76 ÷ 1000
-
- 7.1 ÷ 100
- 23.45 ÷ 1000
- 6.14 ÷ 10000
- 100.23 ÷ 10000
- 9.2 ÷ 10000
- 0.3 ÷ 100000
-
- 36.48 by 20
- 458.5 by 50
- 374.96 80
- 12.04 by 400
- 545.1 by 600
- 21.07 by 7000
-
- 1.5 ÷ 0.3
- 6.4 ÷ 0.4
- 4.94 ÷ 0.7
- 1.296 ÷ 0.108
- 44.1 ÷ 2.1
- 2.52 ÷ 1.2
- 0.625 ÷ 0.025
- 31.5 ÷ 1.5
- 9.69 ÷ 1.9
- 0.00169 ÷ 1.3
- 2.05 ÷ 2.5
- 7.45 ÷ 0.32
- 108.997 ÷ 2.3
-
- 1 ÷ 0.5
- 16 ÷ 0.08
- 148 ÷ 0.074
- 210 ÷ 1.25
- 1032 ÷ 2.064
- 9894 ÷ 3.88
-
- 2 ÷ 5
- 3 ÷ 8
- 16 ÷ 64
- 56 ÷ 224
- 12 ÷ 8
- 1500 ÷ 6000
-
- 3 ÷ 0.8
- 11 ÷ 0.4
- 7 ÷ 1.25
-
Simplify:
- 37.6 + 72.85 − 58.678 − 6.09
- 75.3 − 104.645 + 178.96 − 47.9
- 213.4 − 56.84 − 1 1.87 − 16.087
- 76.3 − 7.666 − 6.77
- 5 − 0.005 − 0.05 + 0.5
Join the Discussion