Skip to content

Number Operation Mathematics - Class 9 आधुनिक विद्या निकेतन ट्यूशन सेंटर Visit: avnlearn.com

1. प्राकृत संख्या

  1. \(663265 - 567267\) = 95998
  2. \(5322222 \div 457\) = 11646
  3. \(641672 - 527126\) = 114546
  4. \(4219 \times 29\) = 122351
  5. \(927074 - 787574\) = 139500
  6. \(975651 - 468312\) = 507339
  7. \(583180 + 122694\) = 705874
  8. \(6006364 \div 812\) = 7397
  9. \(1770 \times 50\) = 88500
  10. \(4558 \times 15\) = 68370
  11. \(819835 + 285678\) = 1105513
  12. \(1152 \times 42\) = 48384
  13. \(957558 + 568334\) = 1525892
  14. \(550589 + 812972\) = 1363561
  15. \(12827110 \div 541\) = 23710

4. पूर्णांक

  1. \((-9264262)\div161\) = -57542
  2. \((-2689)\times(-51)\) = 137139
  3. \(780351-(-790356)\) = 1570707
  4. \((-714426)-613846\) = -1328272
  5. \(1019\times16\) = 16304
  6. \((-21175506)\div(-297)\) = 71298
  7. \((-473616)+(-601168)\) = -1074784
  8. \((-242021)-(-860080)\) = 618059
  9. \(408508-403104\) = 5404
  10. \(47208270\div(-534)\) = -88405
  11. \((-6331)\times(-71)\) = 449501
  12. \((-964532)+(-271864)\) = -1236396
  13. \(873365-(-426779)\) = 1300144
  14. \(5154\times(-40)\) = -206160
  15. \(947489-894312\) = 53177

2. भिन्न

  1. \(\frac{87}{5}\)\(\frac{5}{6}\) = 497/30
  2. \(\frac{43}{6}\) ÷ \(\frac{3}{2}\) = 43/9
  3. \(\frac{18}{2}\) + \(\frac{2}{4}\) = 19/2
  4. \(\frac{96}{6}\) ÷ \(\frac{5}{4}\) = 64/5
  5. \(\frac{34}{4}\) × \(\frac{7}{5}\) = 119/10
  6. \(\frac{27}{3}\) + \(\frac{8}{2}\) = 13
  7. \(\frac{60}{2}\)\(\frac{9}{2}\) = 51/2
  8. \(\frac{29}{7}\) + \(\frac{2}{9}\) = 275/63
  9. \(\frac{52}{2}\) × \(\frac{9}{7}\) = 234/7
  10. \(\frac{40}{3}\) ÷ \(\frac{8}{4}\) = 20/3
  11. \(\frac{31}{6}\) ÷ \(\frac{5}{8}\) = 124/15
  12. \(\frac{73}{9}\)\(\frac{4}{5}\) = 329/45
  13. \(\frac{91}{2}\)\(\frac{3}{8}\) = 361/8
  14. \(\frac{86}{7}\)\(\frac{5}{4}\) = 309/28
  15. \(\frac{87}{3}\) + \(\frac{3}{3}\) = 30
  16. 51 + \(\frac{7}{9}\) = 466/9
  17. 13 − \(\frac{2}{2}\) = 12
  18. 92 + \(\frac{6}{4}\) = 187/2
  19. 67 × \(\frac{2}{2}\) = 67
  20. 45 ÷ \(\frac{7}{4}\) = 180/7
  21. 31 − \(\frac{6}{3}\) = 29
  22. 93 + \(\frac{9}{2}\) = 195/2
  23. 91 + \(\frac{8}{4}\) = 93
  24. 96 ÷ \(\frac{3}{9}\) = 288
  25. 75 + \(\frac{2}{6}\) = 226/3
  26. 83 − \(\frac{2}{5}\) = 413/5
  27. 35 + \(\frac{7}{3}\) = 112/3
  28. 53 × \(\frac{6}{7}\) = 318/7
  29. 55 + \(\frac{1}{9}\) = 496/9
  30. 41 × \(\frac{6}{3}\) = 82

3. दसमलव

  1. 27.1 − 5.4 = 217/10
  2. 73.2 + 5.7 = 789/10
  3. 78.1 + 9.9 = 88
  4. 9.0 − 9.0 = 0
  5. 171.6 ÷ 4.4 = 39
  6. 63.8 ÷ 1.1 = 58
  7. 25.9 + 7.2 = 331/10
  8. 36.1 − 2.0 = 341/10
  9. 2.0 − 1.2 = 4/5
  10. 221.1 ÷ 6.7 = 33
  11. 66.9 + 4.9 = 359/5
  12. 21.4 − 1.6 = 99/5
  13. 39.1 × 2.2 = 4301/50
  14. 14.1 − 0.0 = 141/10
  15. 96.8 − 2.5 = 943/10
  1. \((-40.1)+3.5\) = -183/5
  2. \(8.4-(-5.5)\) = 139/10
  3. \(8.3-3.4\) = 49/10
  4. \((-19.2)-4.2\) = -117/5
  5. \((-44.7)+(-2.1)\) = -234/5
  6. \((-239.736)\div2.8\) = -4281/50
  7. \((-32.0)\times(-7.8)\) = 1248/5
  8. \(21.1+(-4.3)\) = 84/5
  9. \((-896.384)\div9.4\) = -2384/25
  10. \((-33.1)+2.4\) = -307/10
  11. \((-73.4)+0.3\) = -731/10
  12. \(30.112\div0.8\) = 941/25
  13. \((-78.4)+6.5\) = -719/10
  14. \(2.5-9.1\) = -33/5
  15. \((-47.0)-9.6\) = -283/5

4. परिमेय संख्या

  1. \(\frac{62}{8}-\frac{9}{6}\) = 25/4
  2. \(\frac{-19}{8}+\frac{1}{8}\) = -9/4
  3. \(\frac{-91}{6}\div\frac{-8}{9}\) = 273/16
  4. \(\frac{-10}{4}\div\frac{-7}{2}\) = 5/7
  5. \(\frac{-55}{2}\div\frac{5}{8}\) = -44
  6. \(\frac{-37}{9}\div\frac{-7}{9}\) = 37/7
  7. \(\frac{-12}{9}\div\frac{-7}{6}\) = 8/7
  8. \(\frac{-98}{9}+\frac{1}{3}\) = -95/9
  9. \(\frac{-11}{3}\div\frac{5}{2}\) = -22/15
  10. \(\frac{-46}{6}\div\frac{-6}{7}\) = 161/18
  11. \(\frac{-36}{3}-\frac{1}{4}\) = -49/4
  12. \(\frac{-72}{9}-\frac{8}{9}\) = -80/9
  13. \(\frac{-79}{3}\times\frac{1}{4}\) = -79/12
  14. \(\frac{15}{5}-\frac{-6}{6}\) = 4
  15. \(\frac{37}{6}\times\frac{-5}{9}\) = -185/54
  16. \(\frac{29}{3}+\frac{6}{2}\) = 38/3
  17. \(\frac{94}{5}\times\frac{-8}{7}\) = -752/35
  18. \(\frac{-27}{5}\div\frac{6}{4}\) = -18/5
  19. \(\frac{-30}{4}+\frac{-9}{5}\) = -93/10
  20. \(\frac{-86}{2}+\frac{-2}{4}\) = -87/2

3. सरलीकरण

  1. 4 + 2 + 9 − 2 − 7 = 6
  2. 2 + 7 − 9 + 8 − 6 = 2
  3. 6 + 7 − 1 + 4 − 3 = 13
  4. 1 + 7 − 3 − 4 + 8 = 9
  5. 8 + 6 − 1 + 7 − 6 = 14
  6. 3 − 6 − (-2) + 0 − 0 = -1
  7. 8 − 4 − 1 + 8 − 6 = 5
  8. 6 − 5 + 6 + (-3) + 5 = 9
  9. 7 − (-6) + 9 + 7 − (-6) = 35
  10. 7 + (-5) + (-2) − 1 + 8 = 7
  11. \(\frac{5}{6}\) + \(\frac{2}{4}\) + \(\frac{4}{6}\)\(\frac{7}{3}\) + \(\frac{2}{6}\) = 0
  12. \(\frac{8}{6}\)\(\frac{4}{3}\)\(\frac{8}{3}\)\(\frac{6}{7}\)\(\frac{7}{8}\) = -739/168
  13. 3.5 + 4.1 − 8.3 + (-2.9) − 4.8 = -42/5
  14. (-6.6) − 2.2 + 0.2 + (-8.2) + 5.4 = -57/5
  15. (-4.3) + (-2.3) + (-8.3) + (-0.8) + 4.5 = -56/5
  16. (-1.9) − -0.0 + (-4.1) + 0.5 + 0.4 = -51/10
  17. (-7.7) − (-8.0) + 5.2 − (-7.1) + 4.1 = 167/10
  18. \(\frac{7}{4}\)\(\frac{1}{3}\)\(\frac{4}{9}\) + \(\frac{-4}{6}\) + \(\frac{-6}{3}\) = -61/36
  19. \(\frac{-8}{6}\) + \(\frac{-8}{7}\)\(\frac{-8}{8}\)\(\frac{-1}{9}\)\(\frac{-9}{4}\) = 223/252
  20. \(\frac{2}{6}\)\(\frac{3}{9}\)\(\frac{1}{3}\) + \(\frac{3}{7}\)\(\frac{5}{3}\) = -11/7
  21. \(\frac{7}{9}\) + \(\frac{2}{9}\)\(\frac{8}{5}\) + \(\frac{-4}{7}\) + \(\frac{3}{8}\) = -223/280
  22. \(\frac{-8}{6}\) + \(\frac{-5}{3}\)\(\frac{8}{5}\) + \(\frac{3}{6}\) + \(\frac{-5}{8}\) = -189/40
  23. 8 × 9 + 1 × 4 − 3 × 8 − 5 × 7 = 17
  24. 28 ÷ 4 − 63 ÷ 7 + 45 ÷ 5 − 15 ÷ 5 = 4
  25. 49 ÷ 7 + 8 ÷ 4 + 36 ÷ 6 − 18 ÷ 6 = 12
  26. 9 × 9 + 7 × 1 + 3 × 8 − 4 × 5 = 92
  27. 12 ÷ 6 + 42 ÷ 7 + 12 ÷ 2 − 32 ÷ 4 = 6
  28. 6 × 7 + 4 × 2 + 7 × 8 + 2 × 6 = 118
  29. 7 × 4 + 1 × 7 − 1 × 2 + 4 × 4 = 49
  30. 1 × 7 + 4 × 1 + 5 × 7 − 3 × 5 = 31
  31. 72 ÷ 9 + 7 ÷ 1 − 10 ÷ 2 − 42 ÷ 7 = 4
  32. 8 ÷ 8 + 36 ÷ 9 + 49 ÷ 7 + 10 ÷ 2 = 17
  33. (-4) × (-1) + 8 × (-1) − 6 × 0 − (-6) × (-6) = -40
  34. (-9) ÷ (-9) + 0 ÷ (-3) + (-8) ÷ 1 + (-1) ÷ (-1) = -6
  35. (-28) ÷ 7 − (-4) ÷ (-4) + 24 ÷ (-3) + 3 ÷ 3 = -12
  36. 6 ÷ 6 − 40 ÷ (-5) + 63 ÷ 9 − 56 ÷ (-8) = 23
  37. 8 × 2 + 5 × 5 + (-2) × 4 − 7 × (-9) = 96
  38. \(\frac{6}{4}\) × \(\frac{-3}{2}\) + \(\frac{-7}{3}\) × \(\frac{8}{9}\) + \(\frac{2}{6}\) × \(\frac{3}{2}\) + \(\frac{4}{9}\) × \(\frac{2}{5}\) = -1969/540
  39. \(\frac{-9}{4}\) × \(\frac{-8}{3}\)\(\frac{-4}{9}\) × \(\frac{-9}{5}\) + \(\frac{-5}{4}\) × \(\frac{7}{7}\) + \(\frac{-6}{5}\) × \(\frac{-7}{6}\) = 107/20
  40. \(\frac{16}{5}\) ÷ \(\frac{4}{2}\)\(\frac{-8}{21}\) ÷ \(\frac{-2}{6}\) + \(\frac{16}{21}\) ÷ \(\frac{8}{3}\) + \(\frac{-10}{21}\) ÷ \(\frac{-6}{7}\) = 409/315
  41. \(\frac{4}{6}\) × \(\frac{-8}{2}\)\(\frac{-8}{4}\) × \(\frac{8}{6}\) + \(\frac{3}{4}\) × \(\frac{-3}{5}\)\(\frac{6}{7}\) × \(\frac{7}{4}\) = -39/20
  42. \(\frac{6}{9}\) × \(\frac{5}{7}\) + \(\frac{-5}{4}\) × \(\frac{2}{2}\) + \(\frac{4}{9}\) × \(\frac{-6}{3}\)\(\frac{5}{5}\) × \(\frac{7}{9}\) = -205/84

4. वर्ग और वर्गमूल

  1. \(6317345^{2}\) = 39908847849025
  2. \(5178^{2}\) = 26811684
  3. \(52474^{2}\) = 2753520676
  4. \(369395^{2}\) = 136452666025
  5. \(461^{2}\) = 212521
  6. \(408^{2}\) = 166464
  7. \(72751^{2}\) = 5292708001
  8. \(4991^{2}\) = 24910081
  9. \(7474147^{2}\) = 55862873377609
  10. \(748691^{2}\) = 560538213481
  11. \(79^{2}\) = 6241
  12. \(8^{2}\) = 64
  13. \(3298975^{2}\) = 10883236050625
  14. \(9130^{2}\) = 83356900
  15. \(52^{2}\) = 2704
  16. \(3208738^{2}\) = 10295999552644
  17. \(\sqrt{49}\) = 7
  18. \(\sqrt{1}\) = 1
  19. \(\sqrt{4761}\) = 69
  20. \(\sqrt{64}\) = 8
  21. \(\sqrt{6400}\) = 80
  22. \(\sqrt{16}\) = 4
  23. \(\sqrt{1}\) = 1
  24. \(\sqrt{4}\) = 2
  25. \(\sqrt{3600}\) = 60
  26. \(\sqrt{36}\) = 6
  27. \(\sqrt{25}\) = 5
  28. \(\sqrt{2025}\) = 45
  29. \(\sqrt{49}\) = 7
  30. \(\sqrt{1156}\) = 34
  31. \(\sqrt{64}\) = 8
  32. \(\sqrt{8836}\) = 94

4. घन और घनमूल

  1. \(0^{3}\) = 0
  2. \(55^{3}\) = 166375
  3. \(41^{3}\) = 68921
  4. \(8^{3}\) = 512
  5. \(32^{3}\) = 32768
  6. \(6^{3}\) = 216
  7. \(27^{3}\) = 19683
  8. \(65^{3}\) = 274625
  9. \(74^{3}\) = 405224
  10. \(84^{3}\) = 592704
  11. \(4^{3}\) = 64
  12. \(1^{3}\) = 1
  13. \(3^{3}\) = 27
  14. \(8^{3}\) = 512
  15. \(75^{3}\) = 421875
  16. \(2^{3}\) = 8
  17. \(\sqrt[3]{729}\) = 9
  18. \(\sqrt[3]{2197}\) = 13
  19. \(\sqrt[3]{21952}\) = 28
  20. \(\sqrt[3]{42875}\) = 35
  21. \(\sqrt[3]{614125}\) = 85
  22. \(\sqrt[3]{1}\) = 1
  23. \(\sqrt[3]{389017}\) = 73
  24. \(\sqrt[3]{551368}\) = 82
  25. \(\sqrt[3]{103823}\) = 47
  26. \(\sqrt[3]{50653}\) = 37
  27. \(\sqrt[3]{250047}\) = 63
  28. \(\sqrt[3]{2744}\) = 14
  29. \(\sqrt[3]{512}\) = 8
  30. \(\sqrt[3]{1}\) = 1
  31. \(\sqrt[3]{21952}\) = 28
  32. \(\sqrt[3]{830584}\) = 94

4. घातांक

  1. \(48^{8}\times48^{3}\) = 48^{11}
  2. \(32^{2}\times32^{4}\) = 32^{6}
  3. \(8^{8}\times8^{9}\) = 8^{17}
  4. \(24^{2}\times24^{7}\) = 24^{9}
  5. \(76^{4}\div76^{6}\) = 76^{-2}
  6. \(55^{2}\div55^{4}\) = 55^{-2}
  7. \(6^{2}\div6^{2}\) = 6^{0}
  8. \(6^{4}\div6^{5}\) = 6^{-1}
  9. \(151^{3}\div151^{5}\) = 151^{-2}
  10. \(403^{7}\div403^{5}\) = 403^{2}

Join the Discussion

Show Comments

No comments

No comments yet.

Post a Comment

Popular Post

Number Mathematics - Class 6 to 8

1. प्राकृत संख्याएँ 6 अंकों की कुल कितनी संख्याएँ बना सकती है? और सबसे बड़ी तथा छोटी संख्या ज्ञात कीजिए। बिना पुनरावृत्ति किए, 4, 7, 5 और 0 अंकों का प्रयोग करके चार अंकों की सबसे बड़ी और छोटी संख्याएँ बनाइए। अंक 2, 0, 4, 7, 6 तथा 5 से केवल एक-एक बार प्रयोग कर बनने वाली छह अंकों की सबसे बड़ी तथा सबसे छोटी संख्याओं का योग ज्ञात कीजिए। आपके पास 4, 5, 6, 0, 7 और 8 के अंक हैं। इनका प्रयोग करते हुए 6 अंकों की पाँच संख्याएँ बनाइए। अंकों 4, 5, 6, 7, 8 और 9 का प्रयोग कर 8 अंकों की कोई तीन संख्याएँ बनाइए। पढ़ने में सरलता के लिए, अल्प विरामों का प्रयोग कीजिए। अंकों 3, 0 और 4 का प्रयोग कर 6 अंकों की पाँच संख्याएँ बनाइए। अल्प विरामों का भी प्रयोग कीजिए। 8 अंकों की सबसे छोटी संख्या से प्रारंभ करते हुए, आरोही क्रम में अगली पाँच संख्याएँ लिखिए और उन्हें पढिए। निम्नलिखित समूह में सबसे छोटी तथा बड़ी संख्याएँ ज्ञात कीजिए और फिर आरोही ...
By Mr. Guddu Kumar

Number Mathematics Worksheets - Junior

Exercise 1A Write the number between 3456 and 3466. Write the numeral for each of the following numbers: Nine thousand eighteen Fifty-four thousand seventy-three Three lakh two thousand five hundred six Twenty lakh ten thousand eight Six crore five lakh fifty-seven Two crore two lakh two thousand two hundred two Twelve crore twelve lakh twelve thousand twelve Fifteen crore fifty lakh twenty thousand sixty-eight Write each of the following numbers in words: 63,005 7,07,075 34,20,019 3,05,09,012 5,10,03,604 6,18,05,008 19,09,09,900 6,15,30,807 6,60,60,060 Write each of the following numbers in expanded form: 15,768 3,08,927 24,05,609 5,36,18,493 6,06,06,006 9,10,10,510 Writ...
By Mr. Guddu Kumar
Measurement Math - Junior

Measurement Math - Junior

Money Express the following amounts of money in words: 25 rupees 25 paise 8 rupees 50 paise 79 rupees 75 rupees Express the following amounts of money in figures: 20 rupees 75 paise 30 rupees 45 paise 80 rupees 95 paise Express the following amounts of money in words: Rs 20.30 ₹50.75 ₹79.05 Re 0.09 Rs 95.00 Converting the following into paise (p): Rs 2 Rs 9 ₹3 Rs 10 ₹4 Rs 15 ₹3.25 ₹5.10 Rs 1.05 converting the following into rupees and paise: 4020 paise 3080 paise 390 paise 10...
By Mr. Guddu Kumar

Indices and Surds Math - Class 6 to 8

1. प्राकृत संख्याएँ 6 अंकों की कुल कितनी संख्याएँ बना सकती है? और सबसे बड़ी तथा छोटी संख्या ज्ञात कीजिए। बिना पुनरावृत्ति किए, 4, 7, 5 और 0 अंकों का प्रयोग करके चार अंकों की सबसे बड़ी और छोटी संख्याएँ बनाइए। अंक 2, 0, 4, 7, 6 तथा 5 से केवल एक-एक बार प्रयोग कर बनने वाली छह अंकों की सबसे बड़ी तथा सबसे छोटी संख्याओं का योग ज्ञात कीजिए। आपके पास 4, 5, 6, 0, 7 और 8 के अंक हैं। इनका प्रयोग करते हुए 6 अंकों की पाँच संख्याएँ बनाइए। अंकों 4, 5, 6, 7, 8 और 9 का प्रयोग कर 8 अंकों की कोई तीन संख्याएँ बनाइए। पढ़ने में सरलता के लिए, अल्प विरामों का प्रयोग कीजिए। अंकों 3, 0 और 4 का प्रयोग कर 6 अंकों की पाँच संख्याएँ बनाइए। अल्प विरामों का भी प्रयोग कीजिए। 8 अंकों की सबसे छोटी संख्या से प्रारंभ करते हुए, आरोही क्रम में अगली पाँच संख्याएँ लिखिए और उन्हें पढिए। निम्नलिखित समूह में सबसे छोटी तथा बड़ी संख्याएँ ज्ञात कीजिए और फिर आरोही तथा अवरोही क्रम में व्यवस्थित कीजिए। 63521047, 63514759, 73550...
By Mr. Guddu Kumar

Commercial Math - Junior

Temperature Fill in the blanks. A thermometer is used for measuring the … of objects. The temperature of the body of a patient is measured with a … thermometer. Clinical thermometers are marked in … scale. Give the temperatures of the following in Fahrenheit scale as well as Celsius scale. Freezing point of water Boiling point of water Normal body temperature of human beings Convert the temperatures given below to Celsius scale: 122℉ 77℉ 41℉ 122.9℉ 176℉ Convert the temperatures given below to Fahrenheit scale: 110℃ 85℃ 25℃ 80.5℃ 50℃ Averages Find the average of the following: 10 and 16 70 g and 76 g ₹80 and ₹90 40.5 m and 60.3 m 34 l and 20 l 3 \(\frac{1}{2}\) and 6 \(\frac{1}{2}\) ...
By Mr. Guddu Kumar

Algebra Math - Junior

Algebraic Expression Write the following using literals, numbers and signs of basic operations. x increased by 12 y decreased by 7 The difference of a and b. when a > b 5 times x added to 7 times y Sum of x and the quotient of y by 5 x taken away from 4 2 less than the quotient of x by y x multiplied by itself Twice x increased by y Thrice x added to y squared x cubed less than y cubed Write the following in the exponential form: b × b × b × …15 times y × y × y × …20 times 14 × a × a × a × a × b × b × b 6 × x × x × y × y 3 × z × z × z × y × y × x Write down the following in the product form: x 2 y 4 ...
By Mr. Guddu Kumar
Mathematics Revision - Class 10

Mathematics Revision - Class 10

वास्तविक संख्याएँ एक परिमेय और एक अपरिमेय संख्या का योग या अंतर एक अपरिमेय संख्या होती है। एक शून्येतर परिमेय संख्या और एक अपरिमेय संख्या का गुणनफल या भागफल एक अपरिमेय संख्या होती है। मान लीजिए कि x = \(\frac{p}{q}\) एक परिमेय संख्या इस प्रकार है कि q का अभाज्य गुणनखंडन 2 m .5 n के रूप का नहीं है; जहाँ m, n ऋणेतर पूर्णांक हैं। तब, x का असांत आवर्ती दशमलव प्रसार होता है। बहुपद गुणनखंड प्रमेय के प्रयोग द्वारा बीजीय व्यंजकों के गुणनखंड बीजीय सर्वसमिकाएँ : बीजीय सर्वसमिकाएँ - (x + y) 2 = x 2 + 2xy + y 2 (x − y) 2 = x 2 − 2xy + y 2 x 2 − y 2 = (x + y)(x − y) (x + a)(x + b) = x 2 + (a + b)x + ab (x + y + z) 2 = x 2 + y 2 + z 2 + 2xy + 2yz + 2zx (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3 = x 3 + y 3 + 3xy(x + y) (x − y) 3 = x ...
By Mr. Guddu Kumar
Data Handling Math - Junior

Data Handling Math - Junior

Data Handling The sale of shoes of various sizes at a shop on a particular day is given below: 6, 9, 8, 5, 5, 4, 9, 8, 5, 6, 9, 9, 7, 8, 9, 7, 6, 9, 8, 6, 7, 5, 8, 9, 4, 5, 8, 7. Represent the above data in the form of a frequency distribution table. The number of two wheelers owned individually by each of 50 families are listed below. Make a table using tally marks: 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 0, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 2, 1, 1, 4, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 1, 1 The lengths in centimetres (to the nearest centimetre) of 30 carrots are given as follows: 15, 20,22, 22,21, 21, 20, 22, 15, 20, 15, 21, 21, 18, 18, 21, 20, 18, 20, 15, 20, 18, 20, 15, 21, 18, 20, 18, 22 Arrange the data given above in a table using tally marks and answer the following questions. What...
By Mr. Guddu Kumar